Recently, security monitoring facilities have mainly adopted artificial intelligence (AI) technology to provide both increased security and improved performance. However, there are technical challenges in the pursuit of elevating system performance, automation, and security efficiency. In this paper, we proposed intelligent anomaly detection and classification based on deep learning (DL) using multi-modal fusion.
View Article and Find Full Text PDFTransplanting is an important rice cultivation method; however, transplanting shock commonly affects grain yield, and the mechanisms underlying the inhibition of growth, development, and delayed heading caused by transplanting shock have not yet been clearly elucidated. Here, we investigated the effects of seedling age, temperature, and root damage during transplanting on growth, development, and time to heading, both under artificially controlled and natural day length. Additionally, we investigated the impact of seedling root growth space and the potential mitigating effects of residual seed nutrients on young transplanted seedlings.
View Article and Find Full Text PDFBackground: Research on the submergence stress of rice has concentrated on the quiescence strategy to survive in long-term flooding conditions based on Submergence-1A (SUB1A). In the case of the ripening period, it is important that submergence stress can affect the quality as well as the survival of rice. Therefore, it is essential to understand the changes in the distribution of assimilation products in grain and ripening characteristics in submergence stress conditions.
View Article and Find Full Text PDFObjectives: This report seeks to introduce some cases of the patients who received magnetic resonance imaging (MRI)-guided high intensity focused ultrasound (HIFU) surgery (MRgFUS)-based intramural uterine fibroids treatment where the post-MRgFUS intramural uterine fibroids decreased in its volume and protruded towards the endometrial cavity to be expelled by hysteroscopy.
Methods: Of the 157 patients who had received MRgFUS treatment in the Obstetrics and Gynecology of the Hospital from March, 2015 to February, 2016; this study examined 6 of the cases where, after high intensity focused ultrasound treatment, intramural uterine fibroids protruded towards the endometrial cavity to be removed by hysteroscopic myomectomy. The high intensity focused ultrasound utilized in the cases were Philips Achieva 1.
Objectives: Magnetic resonance imaging (MRI)-guided high intensity focused ultrasound surgery (MRgFUS) is a newly emerging non-invasive technique for the treatment of uterine fibroids. The purpose of this study is to review the clinical impact of MRgFUS.
Methods: This study examined 157 patients.
Objective: This study was performed to assess our clinical experience with single-port access (SPA) laparoscopic cystectomy and myomectomy and the surgical outcomes of those procedures at our institution.
Methods: The authors evaluated the surgical outcomes of SPA laparoscopic cystectomy in 293 patients and SPA laparoscopic myomectomy in 246 patients. The surgical outcomes comprised operation time, the amount of blood loss during the operation, the change in hemoglobin (before and after the operation), the change in hematocrit (before and after the operation), switching to the multi-port access method, complications, transfusions, and the duration of the postoperative hospital stay.
Objectives: We examined the effect of sildenafil citrate on advanced glycation end products (AGEs)-induced soluble fms-like tyrosine kinase 1 (sFlt-1) release in JEG-3 choriocarcinoma cells.
Methods: Cells were incubated with control bovine serum albumin (BSA) or AGEs-BSA, and expression of sFlt-1 mRNA and protein release was determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. AGEs-BSA increased sFlt-1 mRNA expression and protein release in a dose-dependent manner.
The high-power broadband terahertz (THz) generator is an essential tool for a wide range of THz applications. Here, we present a novel highly efficient electro-optic quinolinium single crystal for THz wave generation. For obtaining intense and broadband THz waves by optical-to-THz frequency conversion, a quinolinium crystal was developed to fulfill all the requirements, which are in general extremely difficult to maintain simultaneously in a single medium, such as a large macroscopic electro-optic response and excellent crystal characteristics including a large crystal size with desired facets, good environmental stability, high optical quality, wide transparency range, and controllable crystal thickness.
View Article and Find Full Text PDF