Publications by authors named "Jae-Hak Jeong"

This study presents a database of central blood pressure waveforms according to cardiovascular health conditions, to supplement the lack of clinical data in cardiovascular health research, constructed by a cardiovascular simulator. Blood pressure (BP) is the most frequently measured biomarker, and in addition to systolic and diastolic pressure, its waveform represents the various conditions of cardiovascular health. A BP waveform is formed by overlapping the forward and reflected waves, which are affected by the pulse wave velocity (PWV).

View Article and Find Full Text PDF

This study presents a cardiovascular simulator that mimics the human cardiovascular system's physiological structure and properties to reproduce the human blood pressure waveform. Systolic, diastolic blood pressures, and its waveform are key indicators of cardiovascular health. The blood pressure waveform is closely related to the pulse wave velocity and the overlap of the forward and reflected pressure waves.

View Article and Find Full Text PDF

Cardiovascular diseases are the leading cause of global deaths, making cardiovascular health monitoring important. Measuring blood pressure using an automatic sphygmomanometer is the most widely used method to monitor cardiovascular health due to its accessibility, convenience, and strong correlation with cardiovascular diseases. In this work, in order to estimate brachial artery diameter, stiffness, or thickness using an automatic sphygmomanometer, the correlation between upper arm parameters and the oscillometric signal was intensively investigated through analytical, numerical, and experimental approaches.

View Article and Find Full Text PDF

Glioblastoma remains the most devastating brain tumor despite optimal treatment, because of the high rate of recurrence. Distant recurrence has distinct genomic alterations compared to local recurrence, which requires different treatment planning both in clinical practice and trials. To date, perfusion-weighted MRI has revealed that perfusional characteristics of tumor are associated with prognosis.

View Article and Find Full Text PDF

NO has 300 times more global warming potential than CO and is also one of the main stratospheric ozone-depleting substances emitted by human activities such as agriculture, industry, and the combustion of fossil fuels and solid waste. We present here an energy-efficient clathrate-based greenhouse gas-separation (CBGS) technology that can operate at room temperature for selectively recovering NO from gas mixtures. Clathrate formation between α-form/β-form hydroquinone (α-HQ/β-HQ) and gas mixtures reveals guest-specific and structure-driven selectivity, revealing the preferential capture of NO in β-HQ and the molecular sieving characteristics of α-HQ.

View Article and Find Full Text PDF