Joint connection methods, such as shear key and loop bar, improve the structural performance of precast concrete structures; consequently, there is usually decreased workability or constructional efficiency. This paper proposes a high-efficiency skewed pipe shear connector. To resist shear and pull-out forces, the proposed connectors are placed diagonally between precast concrete segments and a cast-in-place concrete joint part on a girder.
View Article and Find Full Text PDFDigital breast tomosynthesis (DBT) is a recently developed system for three-dimensional imaging that offers the potential to reduce the false positives of mammography by preventing tissue overlap. Many qualitative evaluations of digital breast tomosynthesis were previously performed by using a phantom with an unrealistic model and with heterogeneous background and noise, which is not representative of real breasts. The purpose of the present work was to compare reconstruction algorithms for DBT by using various breast phantoms; validation was also performed by using patient images.
View Article and Find Full Text PDFThe purpose of the present work was to investigate the effects of variable projection-view (PV) and angular dose (AD) distributions on the reconstructed image quality for improving microcalcification detection. The PV densities at central and peripheral sites were varied through the distribution of 21 PVs acquired over ± 25° angular range. To vary the AD distribution, 7 PVs in the central region were targeted with two, four and six times the peripheral dose, and the number of central PVs receiving four times the peripheral dose was increased from 3 to 11.
View Article and Find Full Text PDFPurpose: The purpose of this study was to investigate the effect of different acquisition parameters and to characterize their relationships in order to improve the detection of microcalcifications using digital breast tomosynthesis (DBT).
Materials And Methods: DBT imaging parameters were optimized using 32 different acquisition sets with 6 angular ranges (± 5°, ± 10°, ± 13°, ± 17°, ± 21°, and ± 25°) and 8 projection views (PVs) (5, 11, 15, 21, 25, 31, 41, and 51 projections). To investigate the effects of variable angular dose distribution, the acquisition sets were evaluated with delivering more dose toward the central views.