Publications by authors named "Jae-Eun Pi"

Stretchable electronics have become essential for custom-built electronics, self-assembling robotics, and wearable devices. Although many stretchable electronics contain integrated systems, they still limit bulky connection systems. We introduce a new dual-functioned self-attachable and stretchable interface (SASI), allowing a direct and instant interconnection between rigid and soft electronics.

View Article and Find Full Text PDF

Transistors with inorganic semiconductors have superior performance and reliability compared to organic transistors. However, they are unfavorable for building stretchable electronic products due to their brittle nature. Because of this drawback, they have mostly been placed on non-stretchable parts to avoid mechanical strain, burdening the deformable interconnects, which link these rigid parts, with the strain of the entire system.

View Article and Find Full Text PDF

Holographic projection displays provide high diffraction efficiency. However, they have a limited projection angle. This work proposes a holographic projection display with a wide angle, which gives an image of size 306×161 at 700 mm and reduced speckle noise.

View Article and Find Full Text PDF

In this study, it is shown that fluorinated azide, employed as a functional additive to photomultiplication-type organic photodiodes (PM-OPDs), can not only enhance the operational stability by freezing the morphology consisting of matrix polymer/localized acceptor but also stabilize the trapped electron states such that the photomultiplication mechanism can be accelerated further, leading to exceptionally high external quantum efficiency (EQE). The consequent semitransparent OPD consisting of molybdenum oxide (MoO)/Au/MoO/photoactive layer/polyethyleneimine ethoxylated/indium tin oxide (ITO) rendered a maximum EQE of over 500 000% and 370 000% under bottom and top illumination, respectively. Owing to the remarkably high EQE, high specific detectivity of 5.

View Article and Find Full Text PDF

Correction for 'Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials' by Chi-Young Hwang et al., Nanoscale, 2018, DOI: 10.1039/c8nr04471f.

View Article and Find Full Text PDF

We propose rewritable full-color computer-generated holograms (CGHs) based on color-selective diffraction using the diffractive optical component with the resonant characteristic. The structure includes an ultrathin layer of phase-change material Ge2Sb2Te5 (GST) on which a spatial binary pattern of amorphous and crystalline states can be recorded. The CGH patterns can be easily erased and rewritten by the pulsed ultraviolet laser writing technique owing to the thermally reconfigurable characteristic of GST.

View Article and Find Full Text PDF

In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT) sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO) TFT sensor array and associated custom Read-Out IC (ROIC) are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm.

View Article and Find Full Text PDF

A hybrid complementary logic inverter consisting of a microelectromechanical system switch as a promising alternative for the p-type oxide thin film transistor (TFT) and an n-type oxide TFT is presented for ultralow power integrated circuits. These heterogeneous microdevices are monolithically integrated. The resulting logic device shows a distinctive voltage transfer characteristic curve, very low static leakage, zero-short circuit current, and exceedingly high voltage gain.

View Article and Find Full Text PDF