Publications by authors named "Jae Yean Kim"

-mediated transformation remains a cornerstone of plant biology, fueling advancements in molecular genetics, new genomic techniques (NGTs), and the biotech industry. However, recalcitrant crops and technical hurdles persist as bottlenecks. The goal was to develop super-infective ternary vector systems that integrate a novel salicylic acid-degrading enzyme, GABA, and ethylene-degrading enzymes, targeting the transformation of crops by neutralizing plant defense system on .

View Article and Find Full Text PDF

Prime editing (PE) enables almost all types of precise genome editing in animals and plants. It has been successfully adapted to edit several plants with variable efficiency and versatility. However, this technique is inefficient for dicots for unknown reasons.

View Article and Find Full Text PDF

Climate change presents numerous challenges for agriculture, including frequent events of plant abiotic stresses such as elevated temperatures that lead to heat stress (HS). As the primary driving factor of climate change, HS threatens global food security and biodiversity. In recent years, HS events have negatively impacted plant physiology, reducing plant's ability to maintain disease resistance and resulting in lower crop yields.

View Article and Find Full Text PDF

Callose, a β-1,3-glucan plant cell wall polymer, regulates symplasmic channel size at plasmodesmata (PD) and plays a crucial role in a variety of plant processes. However, elucidating the molecular mechanism of PD callose homeostasis is limited. We screened and identified an Arabidopsis mutant plant with excessive callose deposition at PD and found that the mutated gene was α1-COP, a member of the coat protein I (COPI) coatomer complex.

View Article and Find Full Text PDF

Plasmodesmata (PDs) are intercellular organelles carrying multiple membranous nanochannels that allow the trafficking of cellular signalling molecules. The channel regulation of PDs occurs dynamically and is required in various developmental and physiological processes. It is well known that callose is a critical component in regulating PD permeability or symplasmic connectivity, but the understanding of the signalling pathways and mechanisms of its regulation is limited.

View Article and Find Full Text PDF

Plants are the richest source of specialized metabolites. The specialized metabolites offer a variety of physiological benefits and many adaptive evolutionary advantages and frequently linked to plant defense mechanisms. Medicinal plants are a vital source of nutrition and active pharmaceutical agents.

View Article and Find Full Text PDF

Unlabelled: Tomato ( L.) is one of the most important crops in the world for its fruit production. Advances in cutting-edge techniques have enabled the development of numerous critical traits related to the quality and quantity of tomatoes.

View Article and Find Full Text PDF

Directed evolution (DE) of desired locus by targeted random mutagenesis (TRM) tools is a powerful approach for generating genetic variations with novel or improved functions, particularly in complex genomes. TRM-based DE involves developing a mutant library of targeted DNA sequences and screening the variants for the desired properties. However, DE methods have for a long time been confined to bacteria and yeasts.

View Article and Find Full Text PDF

Plants consistently encounter environmental stresses that negatively affect their growth and development. To mitigate these challenges, plants have developed a range of adaptive strategies, including the unfolded protein response (UPR), which enables them to manage endoplasmic reticulum (ER) stress resulting from various adverse conditions. The CRISPR-Cas system has emerged as a powerful tool for plant biotechnology, with the potential to improve plant tolerance and resistance to biotic and abiotic stresses, as well as enhance crop productivity and quality by targeting specific genes, including those related to the UPR.

View Article and Find Full Text PDF

Precision genome editing is highly desired for crop improvement. The recently emerged CRISPR/Cas technology offers great potential applications in precision plant genome engineering. A prime editing (PE) approach combining a reverse transcriptase (RT) with a Cas9 nickase and a "priming" extended guide RNA (gRNA) has shown a high frequency for precise genome modification in mammalian cells and several plant species.

View Article and Find Full Text PDF

Background: Sesuvium portulacastrum is a facultative halophyte capable of thriving in a saline environment. Despite molecular studies conducted to unravel its salt adaptation mechanism, there is a paucity of information on the role of salt-responsive orthologs and microRNAs (miRNAs) in this halophyte. Here, we searched the orthology to identify salt-responsive orthologs and miRNA targets of Sesuvium using the Arabidopsis genome.

View Article and Find Full Text PDF

Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals.

View Article and Find Full Text PDF

Prime editing (PE) technology utilizes an extended prime editing guide RNA (pegRNA) to direct a fusion peptide consisting of nCas9 (H840) and reverse transcriptase (RT) to a specific location in the genome. This enables the installation of base changes at the targeted site using the extended portion of the pegRNA through RT activity. The resulting product of the RT reaction forms a 3' flap, which can be incorporated into the genomic site through a series of biochemical steps involving DNA repair and synthesis pathways.

View Article and Find Full Text PDF

Recently, CRISPR-Cas9-based genome editing has been widely used for plant breeding. In our previous report, a tomato gene encoding hybrid proline-rich protein 1 (HyPRP1), a negative regulator of salt stress responses, has been edited using a CRISPR-Cas9 multiplexing approach that resulted in precise eliminations of its functional domains, proline-rich domain (PRD) and eight cysteine-motif (8CM). We subsequently demonstrated that eliminating the PRD domain of HyPRP1 in tomatoes conferred the highest level of salinity tolerance.

View Article and Find Full Text PDF

Plasmodesmata (PD) play a critical role in symplasmic communication, coordinating plant activities related to growth & development, and environmental stress responses. Most developmental and environmental stress signals induce reactive oxygen species (ROS)-mediated signaling in the apoplast that causes PD closure by callose deposition. Although the apoplastic ROS signals are primarily perceived at the plasma membrane (PM) by receptor-like kinases (RLKs), such components involved in PD regulation are not yet known.

View Article and Find Full Text PDF

Genome-editing (GE) techniques like base editing are ideal for introducing novel gain-of-function mutations and protein evolution. Features of base editors (BEs) such as higher efficacy, relaxed protospacer adjacent motif (PAM), and a broader editing window enables diversification of user-defined targeted locus. Cytosine (CBE) or adenine (ABE) BEs alone can only alter C-to-T or A-to-G in target sites.

View Article and Find Full Text PDF

Prolonged periods of drought triggered by climate change hamper plant growth and cause substantial agricultural yield losses every year. In addition to drought, salinity is one of the major abiotic stresses that severely affect crop health and agricultural production. Plant responses to drought and salinity involve multiple processes that operate in a spatiotemporal manner, such as stress sensing, perception, epigenetic modifications, transcription, post-transcriptional processing, translation, and post-translational changes.

View Article and Find Full Text PDF
Article Synopsis
  • Malathion is a toxic organophosphate that harms food safety, human health, and the environment, making its detection challenging due to current methods being costly and unsuitable for quick testing.
  • The study developed four specific ssDNA aptamers and created two detection strategies that utilize fluorescence and Thioflavin T displacement to identify malathion with high sensitivity (2.01 ppb limit).
  • Advanced techniques, including computational modeling and CD spectroscopy, were used to optimize these novel sensors for real-world food sample analysis and toxic contaminant detection.
View Article and Find Full Text PDF

Genome editing offers revolutionized solutions for plant breeding to sustain food production to feed the world by 2050. Therefore, genome-edited products are increasingly recognized via more relaxed legislation and community adoption. The world population and food production are disproportionally growing in a manner that would have never matched each other under the current agricultural practices.

View Article and Find Full Text PDF

Rapid assessment of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-based genome editing (GE) tools and their components is a critical aspect for successful GE applications in different organisms. In many bacteria, double-strand breaks (DSBs) generated by CRISPR/Cas tool generally cause cell death due to the lack of an efficient nonhomologous end-joining pathway and restricts its use. CRISPR-based DSB-free base editors (BEs) have been applied for precise nucleotide (nt) editing in bacteria, which does not need to make DSBs.

View Article and Find Full Text PDF

Background: Spontaneous double-stranded DNA breaks (DSBs) frequently occur within the genome of all living organisms and must be well repaired for survival. Recently, more important roles of the DSB repair pathways that were previously thought to be minor pathways, such as single-strand annealing (SSA), have been shown. Nevertheless, the biochemical mechanisms and applications of the SSA pathway in genome editing have not been updated.

View Article and Find Full Text PDF

Currently, poor biodiversity has raised challenges in the breeding and cultivation of tomatoes, which originated from the Andean region of Central America, under global climate change. Meanwhile, the wild relatives of cultivated tomatoes possess a rich source of genetic diversity but have not been extensively used for the genetic improvement of cultivated tomatoes due to the possible linkage drag of unwanted traits from their genetic backgrounds. With the advent of new plant breeding techniques (NPBTs), especially CRISPR/Cas-based genome engineering tools, the high-precision molecular breeding of tomato has become possible.

View Article and Find Full Text PDF

Plants perceive an assortment of external cues during their life cycle, including abiotic and biotic stressors. Biotic stress from a variety of pathogens, including viruses, oomycetes, fungi, and bacteria, is considered to be a substantial factor hindering plant growth and development. To hijack the host cell's defence machinery, plant pathogens have evolved sophisticated attack strategies mediated by numerous effector proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Plant gene targeting (GT) can replace sections of a plant's DNA, but efficiency is still a challenge without selection markers.
  • The study improves GT in tomatoes by using Cas12a nucleases and inhibiting the cNHEJ pathway with small chemicals like NU7441, along with silver nitrate treatment.
  • A temperature-tolerant version of Cas12a enhances GT efficiency, and various methods, including targeted deep sequencing, are employed to assess editing success at both cellular and plant levels.
View Article and Find Full Text PDF

Watermeal, Wolffia australiana, is the smallest known flowering monocot and is rich in protein. Despite its great potential as a biotech crop, basic research on Wolffia is in its infancy. Here, we generated the reference genome of a species of watermeal, W.

View Article and Find Full Text PDF