Publications by authors named "Jae Woong Soh"

This paper presents a new variational inference framework for image restoration and a convolutional neural network (CNN) structure that can solve the restoration problems described by the proposed framework. Earlier CNN-based image restoration methods primarily focused on network architecture design or training strategy with non-blind scenarios where the degradation models are known or assumed. For a step closer to real-world applications, CNNs are also blindly trained with the whole dataset, including diverse degradations.

View Article and Find Full Text PDF

This article presents a new method for understanding and visualizing convolutional neural networks (CNNs). Most existing approaches to this problem focus on a global score and evaluate the pixelwise contribution of inputs to the score. The analysis of CNNs for multilabeled outputs or regression has not yet been considered in the literature, despite their success on image classification tasks with well-defined global scores.

View Article and Find Full Text PDF