Publications by authors named "Jae Wook Kang"

Article Synopsis
  • - The study addresses performance issues in perovskite solar cells (PSCs) caused by defects in the surface and grain boundaries of 3D formamidinium lead triiodide (FAPbI) by introducing a new capping layer of pyrrolidinium lead triiodide (PyPbI).
  • - This new capping layer reduces defects and enhances phase stability, leading to better energy alignment which improves charge transport in the solar cells.
  • - The resulting 1D/3D PSCs achieve impressive efficiency rates of about 23.1% and 20.6% for different sizes, showing great potential for high-performance and low-cost solar energy applications.
View Article and Find Full Text PDF

Rare earth ions with d-f transitions (Ce, Eu) have emerged as promising candidates for electroluminescence applications due to their abundant emission spectra, high light conversion efficiency, and excellent stability. However, directly injecting charge into 4f orbitals remains a significant challenge, resulting in unsatisfied external quantum efficiency and high operating voltage in rare earth light-emitting diodes. Herein, we propose a scheme to solve the difficulty by utilizing the energy transfer process.

View Article and Find Full Text PDF

The development of anti-solvent free, scalable, and printable perovskite film is crucial to realizing the low-cost roll-to-roll development of perovskite solar cells (PSCs). Herein, large-area perovskite film fabrication is explored using a spray-assisted sequential deposition technique. How propylene carbonate (PC) solvent additive affects the transformation of lead halide (PbI ) into perovskite at room temperature is investigated.

View Article and Find Full Text PDF

The performance and scalability of perovskite solar cells (PSCs) is highly dependent on the morphology and charge selectivity of the electron transport layer (ETL). This work demonstrates a high-speed (1800 mm min ), room-temperature (25 °C-30 °C) deposition of large-area (62.5 cm ) tin oxide films using a multi-pass spray deposition technique.

View Article and Find Full Text PDF

We report a method for constructing an active optical polarizer using an aligned carbon nanotube (CNT) sheet that is flexible, bendable, transparent, conductive, and also serves to anchor liquid-crystal (LC) molecules. A horizontally aligned CNT sheet was obtained by mechanical stretching from a vertically grown CNT forest, which was then transferred onto a substrate. A liquid polymer was infiltrated into the CNT sheet followed by UV curing, while a part of the CNT sheet was still exposed on the film surface without polymer coating.

View Article and Find Full Text PDF

We determine the influence of substitutional defects on perovskite quantum dots through experimental and theoretical investigations. Substitutional defects were introduced by trivalent dopants (In, Sb, and Bi) in CsPbBr by ligand-assisted reprecipitation. We show that the photoluminescence (PL) emission peak shifts toward shorter wavelengths when doping concentrations are increased.

View Article and Find Full Text PDF

A simple and cost-effective fabrication process of a flexible-based inverse micro-cone array (i-MCA) structure textured on flexible transparent conductive electrodes (TCEs) was successfully demonstrated via a micro-imprinting process. The flexible i-MCA films exhibited an extremely high total transmittance of ∼93% and a haze of ∼95% with reduced reflectance while simultaneously demonstrating water-repellent properties. Introducing i-MCA on the illuminating side of organic solar cells (OSCs)- and perovskite solar cells-rigid glass substrate showed improved power conversion efficiencies (PCEs) due to the light trapping effect by multiple light bounces between cone array structures (forward scattering).

View Article and Find Full Text PDF

In recent years, extensive research has been undertaken to develop fiber-shaped optoelectronic devices, because they are aesthetically pleasing, light in weight, and exhibit superior light emitting properties when compared with conventional planar analogues. In this work, we have successfully developed hollow-fiber shaped organic light emitting diodes (HF-OLED) with an exceptionally high luminance and facile color tunability. The HF-OLED device was fabricated by hierarchically depositing amorphous indium-doped tin oxide electrode on a hollow-fiber, followed by the sequential deposition of light-emitting organic layers and Al cathode.

View Article and Find Full Text PDF

Paper-based electronic devices are attracting considerable attention, because the paper platform has unique attributes such as flexibility and eco-friendliness. Here we report on what is claimed to be the firstly fully integrated vertically-stacked nanocellulose-based tactile sensor, which is capable of simultaneously sensing temperature and pressure. The pressure and temperature sensors are operated using different principles and are stacked vertically, thereby minimizing the interference effect.

View Article and Find Full Text PDF

Herein, a novel strategy is presented for enhancing light absorption by incorporating gold nanostars (Au NSs) into both the active layer of organic solar cells (OSCs) and the rear-contact hole transport layer of perovskite solar cells (PSCs). We demonstrate that the power conversion efficiencies of OSCs and PSCs with embedded Au NSs are improved by 6 and 14%, respectively. We find that pegylated Au NSs are greatly dispersable in a chlorobenzene solvent, which enabled complete blending of Au NSs with the active layer.

View Article and Find Full Text PDF

A network structure consisting of nanomaterials with a stable structural support and charge path on a large area is desirable for various electronic and optoelectronic devices. Generally, network structures have been fabricated via two main strategies: (1) assembly of pre-grown nanostructures onto a desired substrate and (2) direct growth of nanomaterials onto a desired substrate. In this study, we utilized the surface defects of graphene to form a nano-network of ZnO via atomic layer deposition (ALD).

View Article and Find Full Text PDF

A novel approach for the fabrication of ultra-smooth and highly bendable substrates consisting of metal grid-conducting polymers that are fully embedded into transparent substrates (ME-TCEs) was successfully demonstrated. The fully printed ME-TCEs exhibited ultra-smooth surfaces (surface roughness ~1.0 nm), were highly transparent (~90% transmittance at a wavelength of 550 nm), highly conductive (sheet resistance ~4 Ω ◻), and relatively stable under ambient air (retaining ~96% initial resistance up to 30 days).

View Article and Find Full Text PDF

Silver nanowires (AgNWs) have been successfully demonstrated to function as next-generation transparent conductive electrodes (TCEs) in organic semiconductor devices owing to their figures of merit, including high optical transmittance, low sheet resistance, flexibility, and low-cost processing. In this article, high-quality, solution-processed AgNWs with an excellent optical transmittance of 96.5% at 450 nm and a low sheet resistance of 11.

View Article and Find Full Text PDF

Transparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices.

View Article and Find Full Text PDF

We fabricated solid and mesoporous TiO2 nanoparticles (NPs) with relatively large primary sizes of approximately 200 nm via inorganic templates for aero-sol-gel and subsequent aqueous-washing processes. The amount of dye molecules adsorbed by the internal pores in the mesoporous TiO2 NPs was increased by creating the nanopores within the solid TiO2 NPs. Simultaneously, the light-scattering effect of the mesoporous TiO2 NPs fabricated by this approach was secured by maintaining their spherical shape and relatively large average size.

View Article and Find Full Text PDF

We report that significantly more transparent yet comparably conductive AgOx films, when compared to Ag films, are synthesized by the inclusion of a remarkably small amount of oxygen (i.e., 2 or 3 atom %) in thin Ag films.

View Article and Find Full Text PDF

We report the origin of the improvement of the power conversion efficiency (PCE) of hybrid thin-film solar cells when a soluble C(60) derivative, [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM), is introduced as a hole-blocking layer. The PCBM layer could establish better interfacial contact by decreasing the reverse dark-saturation current density, resulting in a decrease in the probability of carrier recombination. The PCE of this optimized device reached a maximum value of 8.

View Article and Find Full Text PDF

Hybrid tandem solar cells comprising an inorganic bottom cell and an organic top cell have been designed and fabricated. The interlayer combination and thickness matching were optimized in order to increase the overall photovoltaic conversion efficiency. A maximum power conversion efficiency of 5.

View Article and Find Full Text PDF

Pure and TiO2- and CdSe-deposited ZnO nanosheets aligned vertically to the surface of ITO (Indium tin oxide) are prepared using electrodeposition, which is used for building blocks of dye sensitized solar cell. A significant improvement in the photovoltaic efficiency can be obtained by depositing TiO2 or CdSe on ZnO. Photoluminescence spectra show that the TiO2 and CdSe nanostructures suppress the recombination of the electron-hole pair of ZnO.

View Article and Find Full Text PDF

Extensive experimental and theoretical study suggests that interchromophore electrostatic interactions are among the most severe impediments to the induction and stability of large electro-optic coefficients in electric-field-poled organic materials. In this report, multichromophore-containing dendritic materials have been investigated as a means to minimize unwanted attenuation of nonlinear optical (electro-optic) activity at high chromophore loading. The dendritic molecular architectures employed were designed to provide optimized molecular scaffolding for electric-field-induced molecular reorientation.

View Article and Find Full Text PDF

Zero-birefringence (delta n < 1 x 10(-6)) photosensitive fluorinated polyimides are synthesized for use in polymer optical waveguides. To obtain zero birefringence, the UV exposure time and copolymer content of photosensitive polyimides are controlled. Zero birefringence combined with photoprocessing of the material has excellent potential for applications in high-performance wavelength division multiplexing components such as polarization-independent arrayed waveguide gratings and Bragg wavelength filters.

View Article and Find Full Text PDF