Publications by authors named "Jae Sung Bae"

Article Synopsis
  • The study focuses on VacA, a toxin from Helicobacter pylori, investigating its harmful effects on specific types of stomach cells, particularly how it damages mitochondria and affects cell function.
  • Researchers used human gastric organoids (hAGOs) and tissue samples from infected patients to demonstrate that VacA leads to significant mitochondrial damage and reduced energy production, which weakens the stomach's protective barrier.
  • The study identified a potential treatment, MLN8054, that can repair VacA-induced mitochondrial damage and restore the integrity of gastric cells, highlighting hAGOs as an effective model for testing new drugs against VacA-related diseases.
View Article and Find Full Text PDF
Article Synopsis
  • * The study shows that "trained immunity" in neutrophils leads to significant metabolic changes under diabetic conditions, including increased glycolysis and fatty acid oxidation, resulting in higher levels of acetyl-coenzyme A.
  • * Inhibiting specific enzymes involved in this process can prevent the priming of neutrophils, indicating that targeting neutrophil-trained immunity could be a potential therapy to manage inflammation related to diabetes.
View Article and Find Full Text PDF

Over the past decade, numerous studies have highlighted the importance of acid sphingomyelinase (ASM) in disease treatment in humans. This enzyme functions primarily to generate ceramide, maintain the cellular membrane, and regulate cellular function. However, in the blood and brain of patients with neurological disorders, including major depression, ischemic stroke, amyotrophic lateral sclerosis, multiple sclerosis, and Alzheimer's disease (AD), elevated ASM levels significantly suggest disease onset or progression.

View Article and Find Full Text PDF

Microglia plays a key role in determining the progression of amyotrophic lateral sclerosis (ALS), yet their precise role in ALS has not been identified in humans. This study aimed to identify a key factor related to the functional characteristics of microglia in rapidly progressing sporadic ALS patients using the induced microglia model, although it is not identical to brain resident microglia. After confirming that microglia-like cells (iMGs) induced by human monocytes could recapitulate the main signatures of brain microglia, step-by-step comparative studies were conducted to delineate functional differences using iMGs from patients with slowly progressive ALS [ALS(S), n = 14] versus rapidly progressive ALS [ALS(R), n = 15].

View Article and Find Full Text PDF

Acid sphingomyelinase (ASM) has been implicated in neurodegenerative disease pathology, including Alzheimer's disease (AD). However, the specific role of plasma ASM in promoting these pathologies is poorly understood. Herein, we explore plasma ASM as a circulating factor that accelerates neuropathological features in AD by exposing young APP/PS1 mice to the blood of mice overexpressing ASM, through parabiotic surgery.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by the degeneration of motor neurons in the spinal cord. Main symptoms are manifested as weakness, muscle loss, and muscle atrophy. Some studies have reported that alterations in sphingolipid metabolism may be intimately related to neurodegenerative diseases, including ALS.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common neurodegenerative disorder, and is associated with several pathophysiological features, including cellular dysfunction, failure of neurotransmission, cognitive impairment, cell death, and other clinical consequences. Advanced research on the pathogenesis of AD has elucidated a mechanistic framework and revealed many therapeutic possibilities. Among the mechanisms, sphingolipids are mentioned as distinctive mediators to be associated with the pathology of AD.

View Article and Find Full Text PDF

Although capsular contracture remains one of the major problems following silicone breast implantation, the associated mechanism has yet to be determined. This study thus aimed to investigate capsule formation and capsular contracture using three types of implants with different surface topographies in vivo. Three types of implants (i.

View Article and Find Full Text PDF

Background/aim: The mechanisms underlying capsular contracture remain unclear. Emerging evidence supports the inflammation hypothesis, according to which bacteria from an adherent biofilm cause chronic inflammation and collagen deposition on the implant and trigger capsular contracture. Our goal was to evaluate the effect of different types of breast implants on the growth of Staphylococcus aureus, S.

View Article and Find Full Text PDF

Recently, aducanumab, a beta amyloid targeted immunotherapy, has been approved by the US Food and Drug Administration for the treatment of Alzheimer's dementia (AD). Although many questions need to be answered, this approval provides a promising hope for the development of AD drugs that could be supported by new biomarkers such as blood-based ones and composite neuropsychological tests that can confirm pathologic changes in early stages of AD. It is important to elucidate the complexity of AD which is known to be associated with other factors such as vascular etiologies and neuro-inflammation.

View Article and Find Full Text PDF

The majority of peripheral and central nervous system disorders are related to hyperactive inflammatory responses, leading to irreversible and persistent cellular defects, functional impairments, and behavioral deficits. Advances in our understanding of these disorders have revealed the disruption of inflammation resolution pathways due to abrogated responses by specialized pro-resolving lipid mediators (SPMs). SPMs comprise a class of bioactive lipids and cell signaling molecules that function to resolve inflammation, pain, and function in host defense and tissue remodeling.

View Article and Find Full Text PDF

Pearson syndrome (PS) is a multisystem mitochondrial cytopathy arising from deletions in mitochondrial DNA. Pearson syndrome is a sporadic disease that affects the hematopoietic system, pancreas, eyes, liver, and heart and the prognosis is poor. Causes of morbidity include metabolic crisis, bone marrow dysfunction, sepsis, and liver failure in early infancy or childhood.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by complex, multifactorial neuropathology, suggesting that small molecules targeting multiple neuropathological factors are likely required to successfully impact clinical progression. Acid sphingomyelinase (ASM) activation has been recognized as an important contributor to these neuropathological features in AD, leading to the concept of using ASM inhibitors for the treatment of this disorder. Here we report the identification of KARI 201, a direct ASM inhibitor evaluated for AD treatment.

View Article and Find Full Text PDF

For decades, lipids were confined to the field of structural biology and energetics as they were considered only structural constituents of cellular membranes and efficient sources of energy production. However, with advances in our understanding in lipidomics and improvements in the technological approaches, astounding discoveries have been made in exploring the role of lipids as signaling molecules, termed bioactive lipids. Among these bioactive lipids, sphingolipids have emerged as distinctive mediators of various cellular processes, ranging from cell growth and proliferation to cellular apoptosis, executing immune responses to regulating inflammation.

View Article and Find Full Text PDF

Xenopus laevis is highly suitable as a toxicology animal model owing to its advantages in embryogenesis research. For toxicological studies, a large number of embryos must be handled simultaneously because they very rapidly develop into the target stages within a short period of time. To efficiently handle the embryos, a convenient embryo housing device is essential for fast and reliable assessment and statistical evaluation of malformation caused by toxicants.

View Article and Find Full Text PDF

Patients with severe coronavirus disease 2019 (COVID-19) demonstrate dysregulated immune responses including exacerbated neutrophil functions. Massive neutrophil infiltrations accompanying neutrophil extracellular trap (NET) formations are also observed in patients with severe COVID-19. However, the mechanism underlying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced NET formation has not yet been elucidated.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are membrane-derived heterogeneous vesicles that mediate intercellular communications. They have recently been considered as ideal vehicles for drug-delivery systems, and immune cells are suggested as a potential source for drug-loaded EVs. In this study, we investigated the possibility of neutrophils as a source for drug-loaded EVs.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are membrane-derived vesicles that mediate intercellular communications. Neutrophils produce different subtypes of EVs during inflammatory responses. Neutrophil-derived trails (NDTRs) are generated by neutrophils migrating toward inflammatory foci, whereas neutrophil-derived microvesicles (NDMVs) are thought to be generated by neutrophils that have arrived at the inflammatory foci.

View Article and Find Full Text PDF

Once characterized as an immune privileged area, recent scientific advances have demonstrated that the central nervous system (CNS) is both immunologically active and a specialized site. The anatomical and cellular features of the brain barriers, the glia limitans, and other superficial coverings of the CNS endow the brain with specificity for immune cell entry and other macro- and micro-elements to the brain. Cellular trafficking via barriers comprised of tightly junctioned non-fenestrated endothelium or tightly regulated fenestrated epithelium results in different phenotypic and cellular changes in the brain, that is, inflammatory versus regulatory changes.

View Article and Find Full Text PDF

We report a prodrug, , to overcome the shortcomings of an anti-neuroinflammatory molecule, -diacetyl--phenylenediamine (), in biological applicability for potential therapeutic applications. We suspect that can release through endogenous enzymatic bioconversion. Consequently, exhibits in vivo efficacies in alleviating neuroinflammation, reducing amyloid-β aggregate accumulation, and improving cognitive function in Alzheimer's disease transgenic mice.

View Article and Find Full Text PDF

Because of repeated failures of clinical trials, the concept of Alzheimer's disease (AD) has been changing rapidly in recent years. As suggested by the National Institute on Aging and the Alzheimer's Association Research Framework, the diagnosis and classification of AD is now based on biomarkers rather than on symptoms, allowing more accurate identification of proper candidates for clinical trials by pathogenesis and disease stage. Recent development in neuroimaging has provided a way to reveal the complex dynamics of amyloid and tau in the brain , and studies of blood biomarkers are taking another leap forward in diagnosis and treatment of AD.

View Article and Find Full Text PDF

Sphingosine kinase1 (SphK1) is an acetyl-CoA dependent acetyltransferase which acts on cyclooxygenase2 (COX2) in neurons in a model of Alzheimer's disease (AD). However, the mechanism underlying this activity was unexplored. Here we show that N-acetyl sphingosine (N-AS) is first generated by acetyl-CoA and sphingosine through SphK1.

View Article and Find Full Text PDF

Aging, which is associated with age-related changes in physiological processes, is the most significant risk factor for the development and progression of neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Accumulating evidence has indicated that sphingolipids are significant regulators that are associated with pathogenesis in aging and several age-related neurodegenerative diseases. In particular, abnormal levels of acid sphingomyelinase (ASM), one of the significant sphingolipid-metabolizing enzymes, have been found in the blood and some tissues under various neuropathological conditions.

View Article and Find Full Text PDF

Sphingolipids are ubiquitous building blocks of eukaryotic cell membranes that function as signaling molecules for regulating a diverse range of cellular processes, including cell proliferation, growth, survival, immune-cell trafficking, vascular and epithelial integrity, and inflammation. Recently, several studies have highlighted the pivotal role of sphingolipids in neuroinflammatory regulation. Sphingolipids have multiple functions, including induction of the expression of various inflammatory mediators and regulation of neuroinflammation by directly effecting the cells of the central nervous system.

View Article and Find Full Text PDF