Publications by authors named "Jae Suk Seo"

The human prion protein fragment, PrP (106-126), may contain a majority of the pathological features associated with the infectious scrapie isoform of PrP, known as PrP(Sc). Based on our previous findings that hypoxia protects neuronal cells from PrP (106-126)-induced apoptosis and increases cellular prion protein (PrP(C)) expression, we hypothesized that hypoxia-related genes, including hypoxia-inducible factor-1 alpha (HIF-1α), may regulate PrP(C) expression and that these genes may be involved in prion-related neurodegenerative diseases. Hypoxic conditions are known to elicit cellular responses designed to improve cell survival through adaptive processes.

View Article and Find Full Text PDF

Bisphosphonates (BPs) are widely used for the prevention and treatment of osteoporosis. However, there have been numerous reports of side effects of BPs, including osteonecrosis of the jaw. In the present study, we investigated whether hypoxia inhibits BP-induced apoptosis, and examined the mechanisms of this inhibition.

View Article and Find Full Text PDF

Hypoxia occurs frequently in various solid tumors and elicits a cellular response designed to improve cell survival through adaptive processes, thereby accelerating cancer progression and the development of chemotherapy resistance. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, leads to tumor cell death via both intrinsic and extrinsic apoptotic signaling pathways. Hypoxia inhibits TRAIL-mediated apoptosis and attenuates the therapeutic activity of TRAIL in cancer management.

View Article and Find Full Text PDF

Prion diseases are infectious neurodegenerative disorders characterized by the conversion of the cellular prion protein (PrPc) to the misfolded isoform (PrPsc). Prion peptide PrP 106-126 [PrP (106-126)] shares many physiological properties with PrPsc; it is neurotoxic in vitro and in vivo. PrP (106-126) induces neurotoxicity by the overexpression of PrPc and activation of the mitogen-activated protein (ERK1/2).

View Article and Find Full Text PDF

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily of cytokines, is one of the most promising candidates for cancer therapeutics. However, many osteosarcomas are resistant to TRAIL. Bisphosphonates are very effective in the treatment of bone problems associated with malignancies; the antitumor effects are due to the inhibition of protein prenylation that is essential for cell function and survival.

View Article and Find Full Text PDF

Prion diseases associated with the conversion of the cellular prion protein (PrP(C)) to the misfolded isoform (PrP(Sc)), affect the central nervous system (CNS) of humans and animals. Resveratrol, an activator of class III histone deacetylase SIRT1, is important in attenuating cellular injury and oxidative stress. The present study investigated the effects of SIRT1 activation on prion protein-mediated neuronal cell death and examined its possible signals in intracellular apoptotic pathways.

View Article and Find Full Text PDF

The prion diseases are neurodegenerative disorders characterized by the conversion of the PrPc (normal cellular prion) to the PrPsc (misfolded isoform). The accumulation of PrPsc within the central nervous system (CNS) leads to neurocytotoxicity by increasing oxidative stress. In addition, many neurodegenerative disorders including prion, Parkinson's and Alzheimer's diseases may be regulated by cholesterol homeostasis.

View Article and Find Full Text PDF

Hypoxia is a common environmental stress. Particularly, the center of rapidly-growing solid tumors is easily exposed to hypoxic conditions. Hypoxia is well known to attenuate the therapeutic response to radio and chemotherapies including tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) protein.

View Article and Find Full Text PDF

Prion diseases are neurodegenerative disorders characterized by the accumulation of an abnormal isoform of the prion protein PrP(Sc). Human prion protein fragment, PrP (106-126) (prion protein peptide 106-126), may contain most of the pathological features associated with PrP(Sc). Hypoxic conditions elicit cellular responses adaptively designed to improve cell survival and have an important role in the process of cell survival.

View Article and Find Full Text PDF