Publications by authors named "Jae S Ra"

Replication stresses are the major source of break-induced replication (BIR). Here, we show that in alternative lengthening of telomeres (ALT) cells, replication stress-induced polyubiquitinated proliferating cell nuclear antigen (PCNA) (polyUb-PCNA) triggers BIR at telomeres and the common fragile site (CFS). Consistently, depleting RAD18, a PCNA ubiquitinating enzyme, reduces the occurrence of ALT-associated promyelocytic leukemia (PML) bodies (APBs) and mitotic DNA synthesis at telomeres and CFS, both of which are mediated by BIR.

View Article and Find Full Text PDF

Homologous recombination (HR) requires bidirectional end resection initiated by a nick formed close to a DNA double-strand break (DSB), dysregulation favoring error-prone DNA end-joining pathways. Here we investigate the role of the ATAD5, a PCNA unloading protein, in short-range end resection, long-range resection not being affected by ATAD5 deficiency. Rapid PCNA loading onto DNA at DSB sites depends on the RFC PCNA loader complex and MRE11-RAD50-NBS1 nuclease complexes bound to CtIP.

View Article and Find Full Text PDF

Targeting - and -deficient tumors through synthetic lethality using poly(ADP-ribose) polymerase inhibitors (PARPi) has emerged as a successful strategy for cancer therapy. PARPi monotherapy has shown excellent efficacy and safety profiles in clinical practice but is limited by the need for tumor genome mutations in or other homologous recombination genes as well as the rapid emergence of resistance. In this study, we identified 2-chloro--diethylethanamine hydrochloride (CDEAH) as a small molecule that selectively kills - and xeroderma pigmentosum A-deficient cells.

View Article and Find Full Text PDF

DNA double-strand break (DSB) repair via homologous recombination is initiated by end resection. The extent of DNA end resection determines the choice of the DSB repair pathway. Nucleases for end resection have been extensively studied.

View Article and Find Full Text PDF

DNA polymerase θ (POLQ) is a unique DNA polymerase that is able to perform microhomology-mediated end-joining as well as translesion synthesis (TLS) across an abasic (AP) site and thymine glycol (Tg). However, the biological significance of the TLS activity is currently unknown. Herein we provide evidence that the TLS activity of POLQ plays a critical role in repairing complex DNA double-strand breaks (DSBs) induced by high linear energy transfer (LET) radiation.

View Article and Find Full Text PDF
Article Synopsis
  • TRAIP helps the cells fix DNA damage, but scientists don't fully understand how it works in animals.
  • They discovered a new protein called ZNF212 that works with TRAIP and shows up at places where DNA is damaged.
  • If there’s not enough ZNF212, the cell's ability to repair DNA gets messed up, and it seems ZNF212 helps other important pathways for fixing DNA too.
View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (ARSs) have evolved to acquire various additional domains. These domains allow ARSs to communicate with other cellular proteins in order to promote non-translational functions. Vertebrate cytoplasmic isoleucyl-tRNA synthetases (IARS1s) have an uncharacterized unique domain, UNE-I.

View Article and Find Full Text PDF

Cobll1 affects blast crisis (BC) progression and tyrosine kinase inhibitor (TKI) resistance in chronic myeloid leukemia (CML). PACSIN2, a novel Cobll1 binding protein, activates TKI-induced apoptosis in K562 cells, and this activation is suppressed by Cobll1 through the interaction between PACSIN2 and Cobll1. PACSIN2 also binds and inhibits SH3BP1 which activates the downstream Rac1 pathway and induces TKI resistance.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers aim to create cancer treatments that kill cancer cells without harming normal cells, which has been difficult due to similarities between the two.
  • The study introduces a new method called CINDELA, which uses CRISPR technology to target and induce DNA damage in cancer cells specifically.
  • CINDELA has shown promising results by selectively killing various types of human cancer cells and tumors in mice, while leaving healthy cells unharmed.
View Article and Find Full Text PDF

Reactive oxygen species (ROS) generate oxidized bases and single-strand breaks (SSBs), which are fixed by base excision repair (BER) and SSB repair (SSBR), respectively. Although excision and repair of damaged bases have been extensively studied, the function of the sliding clamp, proliferating cell nuclear antigen (PCNA), including loading/unloading, remains unclear. We report that, in addition to PCNA loading by replication factor complex C (RFC), timely PCNA unloading by the ATPase family AAA domain-containing protein 5 (ATAD5)-RFC-like complex is important for the repair of ROS-induced SSBs.

View Article and Find Full Text PDF

Proper activation of DNA repair pathways in response to DNA replication stress is critical for maintaining genomic integrity. Due to the complex nature of the replication fork (RF), problems at the RF require multiple proteins, some of which remain unidentified, for resolution. In this study, we identified the N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor (NSMF) as a key replication stress response factor that is important for ataxia telangiectasia and Rad3-related protein (ATR) activation.

View Article and Find Full Text PDF

The higher-order structural organization and dynamics of the chromosomes play a central role in gene regulation. To explore this structure-function relationship, it is necessary to directly visualize genomic elements in living cells. Genome imaging based on the CRISPR system is a powerful approach but has limited applicability due to background signals and nonspecific aggregation of fluorophores within nuclei.

View Article and Find Full Text PDF

Proliferating cell nuclear antigen (PCNA) is a DNA clamp essential for DNA replication. During DNA synthesis, PCNA is continuously loaded onto and unloaded from DNA. PCNA recruits various proteins to nascent DNA to facilitate chromosome duplication.

View Article and Find Full Text PDF

Maintaining stability of replication forks is important for genomic integrity. However, it is not clear how replisome proteins contribute to fork stability under replication stress. Here, we report that ATAD5, a PCNA unloader, plays multiple functions at stalled forks including promoting its restart.

View Article and Find Full Text PDF

Polyubiquitination of proliferating cell nuclear antigen (PCNA) regulates the error-free template-switching mechanism for the bypass of DNA lesions during DNA replication. PCNA polyubiquitination is critical for the maintenance of genomic integrity; however, the underlying mechanism is poorly understood. Here, we demonstrate that tonicity-responsive enhancer-binding protein (TonEBP) regulates PCNA polyubiquitination in response to DNA damage.

View Article and Find Full Text PDF

Replication-Factor-C (RFC) and RFC-like complexes (RLCs) mediate chromatin engagement of the proliferating cell nuclear antigen (PCNA). It remains controversial how RFC and RLCs cooperate to regulate PCNA loading and unloading. Here, we show the distinct PCNA loading or unloading activity of each clamp loader.

View Article and Find Full Text PDF

A C6 beta-chemokine, CKbeta8-1, suppressed the colony formation of CD34+ cells of human cord blood (CB). Molecular mechanisms involved in CKbeta8-1-medicated suppression of colony formation of CD34+ cells are not known. To address this issue, the level of various G1/S cell cycle regulating proteins in CKbeta8-1-treated CD34+ cells were compared with those in untreated CD34+ cells.

View Article and Find Full Text PDF

Osteoprotegerin (OPG) and decoy receptor 3 (DcR) are soluble members of the tumor necrosis factor receptor (TNFR) superfamily. Because the proteins are found in the circulation, their effect on hematopoietic progenitor cells was examined. OPG suppressed colony formation by all myeloid progenitor cells stimulated with one or more growth factors.

View Article and Find Full Text PDF