Macrophages play important roles in cancer microenvironment. Human cytosolic glycyl-tRNA synthetase (GARS1) was previously shown to be secreted via extracellular vesicles (EVs) from macrophages to trigger cancer cell death. However, the effects of GARS1-containing EVs (GARS1-EVs) on macrophages as well as on cancer cells and the working mechanisms of GARS1 in cancer microenvironment are not yet understood.
View Article and Find Full Text PDFGlycyl-tRNA synthetase 1 (GARS1), a cytosolic enzyme secreted from macrophages, promotes apoptosis in cancer cells. However, the mechanism underlying GARS1 secretion has not been elucidated. Here, we report that GARS1 is secreted through unique extracellular vesicles (EVs) with a hydrodynamic diameter of 20-58 nm (mean diameter: 36.
View Article and Find Full Text PDFAAA+ (ATPases associated with diverse cellular activities) chaperones are involved in a plethora of cellular activities to ensure protein homeostasis. The function of AAA+ chaperones is mostly modulated by their hexameric/dodecameric quaternary structures. Here we report the structural and biochemical characterizations of a tetradecameric AAA+ chaperone, ClpL from Streptococcus pneumoniae.
View Article and Find Full Text PDFNatural medicinal plants have attracted considerable research attention for their potential as effective drugs. The roots, leaves and stems of the plant, , which is endemic to southern regions of Asia, have long been used as a folk medicine to treat variety of diseases. However, the sap of this plant has not been widely studied and its bioactive properties have yet to be clearly elucidated.
View Article and Find Full Text PDFEdible plants have been widely used in traditional therapeutics because of the biological activities of their natural ingredients, including anticancer, antioxidant, and anti-inflammatory properties. Plant sap contains such medicinal substances and their secondary metabolites provide unique chemical structures that contribute to their therapeutic efficacy. Plant extracts are known to contain a variety of extracellular vesicles (EVs) but the effects of such EVs on various cancers have not been investigated.
View Article and Find Full Text PDFCryo-electron microscopy (cryo-EM) is now the first choice to determine the high-resolution structures of huge protein complexes. Grids with two-dimensional arrays of holes covered with a carbon film are typically used in cryo-EM. Although semi-automatic plungers are available, notable trial-and-error is still required to obtain a suitable grid specimen.
View Article and Find Full Text PDFIn this study, we report on the first chemical synthesis of ultra-short pyrazole-arginine based antimicrobial peptidomimetics derived from the newly synthesized N-alkyl/aryl pyrazole amino acids. Through the systematic tuning of hydrophobicity, charge, and peptide length, we identified the shortest peptide Py11 with the most potent antimicrobial activity. Py11 displayed greater antimicrobial activity against antibiotic-resistant bacteria, including MRSA, MDRPA, and VREF, which was approximately 2-4 times higher than that of melittin.
View Article and Find Full Text PDFThe structure and function of the Antarctic marine diatom Chaetoceros neogracile antifreeze protein (Cn-AFP), as well as its expression levels and characteristics of the ice-binding site, were analyzed in the present study. In silico analysis revealed that the Cn-AFP promoter contains both light- and temperature-responsive elements. Northern and Western blot analyses demonstrated that both Cn-AFP transcript and protein expression were strongly and rapidly stimulated by freezing, as well as temperature and high light stress.
View Article and Find Full Text PDFDiversity of sequence and structure in naturally occurring antimicrobial peptides (AMPs) limits their intensive structure-activity relationship (SAR) study. In contrast, peptidomimetics have several advantages compared to naturally occurring peptide in terms of simple structure, convenient to analog synthesis, rapid elucidation of optimal physiochemical properties and low-cost synthesis. In search of short antimicrobial peptides using peptidomimetics, which provide facile access to identify the key factors involving in the destruction of pathogens through SAR study, a series of simple and short peptidomimetics consisting of multi-Lys residues and lipophilic moiety have been prepared and found to be active against several Gram-negative and Gram-positive bacteria containing methicillin-resistant Staphylococcus aureus (MRSA) without hemolytic activity.
View Article and Find Full Text PDFVacuolar-type H(+)-ATPase (V-ATPase) is a multi-subunit proton pump. The proton pump is essential for the regulation of pH in various eukaryotic cellular processes. Among the 14 subunits that constitute V-ATPase, d subunit mediates coupling between cytosolic and membrane domains.
View Article and Find Full Text PDFBackground: Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability.
Methodology/principal Findings: In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time.
To develop short antimicrobial peptide with improved cell selectivity and reduced mammalian cell toxicity compared to sheep myeloid antimicrobial peptide-29 (SMAP-29) and elucidate the possible mechanisms responsible for their antimicrobial action, we synthesized a N-terminal 18-residue peptide amide (SMAP-18) from SMAP-29 and its Trp-substituted analog (SMAP-18-W). Due to their reduced hemolytic activity and retained antimicrobial activity, SMAP-18 and SMAP-18-W showed higher cell selectivity than SMAP-29. In addition, SMAP-18 and SMAP-18-W had no cytotoxicity against three different mammalian cells such as RAW 264.
View Article and Find Full Text PDF(-)-Epigallocatechin-3-gallate (EGCG), one of the major flavonoid components of green tea, is known to have a broad antiviral activity against several enveloped viruses, including the influenza virus. However, its mode of action and the mechanism that allows it to target influenza virus molecules have not been fully elucidated. Thus, this study investigated the molecular mechanism by which EGCG suppresses influenza virus infections.
View Article and Find Full Text PDFHere we report for the first time the synthesis of Histidine (His) derived lipo-amino acids having pendant lipid tails at N(τ)- and N(π)-positions on imidazole group of His and applied it into synthesis of lipo-peptides. The attachment of His-derived lipo-amino acid into the very short inactive cationic peptides endows potent antimicrobial activity against Gram-positive and Gram-negative bacteria without hemolytic activity. Furthermore, our designed His-derived lipo-peptidomimetics (HDLPs) consisting of two or three residues displayed strong anti-MRSA activity and protease stability as well as retained potent antimicrobial activity under high salt concentration.
View Article and Find Full Text PDFSince the bacterial resistance to antibiotics is increasing rapidly, numerous studies have contributed to the design and synthesis of potent synthetic mimics of antimicrobial peptides (AMPs). In an attempt to find the pharmacophore of short antimicrobial peptidomimetics through systematic tuning of hydrophobic and hydrophilic patterns, we have identified a set of short histidine-derived antimicrobial peptides (SAMPs) with potent and broad-spectrum activity. A combination of high antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), without hemolytic activity and proteolytic stability makes these molecules promising candidates for novel antimicrobial therapeutics.
View Article and Find Full Text PDFWe examined six Arabidopsis thaliana genes from the DJ-1/PfpI superfamily for similarity to the recently characterized bacterial and animal glyoxalases. Based on their sequence similarities, the six genes were classified into two sub-groups consisting of homologs of the human DJ-1 gene and the PH1704 gene of Pyrococcus horikoshii. Unlike the homologs from other species, all the A.
View Article and Find Full Text PDFGenevestigator analysis has indicated heat shock induction of transcripts for NADPH-thioredoxin reductase, type C (NTRC) in the light. Here we show overexpression of NTRC in Arabidopsis (NTRC°(E)) resulting in enhanced tolerance to heat shock, whereas NTRC knockout mutant plants (ntrc1) exhibit a temperature sensitive phenotype. To investigate the underlying mechanism of this phenotype, we analyzed the protein's biochemical properties and protein structure.
View Article and Find Full Text PDFIn contrast to most enveloped viruses, poxviruses produce infectious particles that do not acquire their internal lipid membrane by budding through cellular compartments. Instead, poxvirus immature particles are generated from atypical crescent-shaped precursors whose architecture and composition remain contentious. Here we describe the 2.
View Article and Find Full Text PDFThe tripartite protein exotoxin secreted by Bacillus anthracis, a major contributor to its virulence and anthrax pathogenesis, consists of binary complexes of the protective antigen (PA) heptamer (PA63h), produced by proteolytic cleavage of PA, together with either lethal factor or edema factor. The mouse monoclonal anti-PA antibody 1G3 was previously shown to be a potent antidote that shares F(C) domain dependency with the human monoclonal antibody MDX-1303 currently under clinical development. Here we demonstrate that 1G3 instigates severe perturbation of the PA63h structure and creates a PA supercomplex as visualized by electron microscopy.
View Article and Find Full Text PDFIn a mature and infectious retroviral particle, the capsid protein (CA) forms a shell surrounding the genomic RNA and the replicative machinery of the virus. The irregular nature of this capsid shell precludes direct atomic resolution structural analysis. CA hexamers and pentamers are the fundamental building blocks of the capsid, however the pentameric state, in particular, remains poorly characterized.
View Article and Find Full Text PDFOrf virus, the prototype parapoxvirus, is responsible for contagious ecthyma in sheep and goats. The central region of the viral genome codes for proteins highly conserved among vertebrate poxviruses and which are frequently essential for viral proliferation. Analysis of the recently published genome sequence of orf virus revealed that among such essential proteins, the protein orfv075 is an orthologue of D13, the rifampin resistance gene product critical for vaccinia virus morphogenesis.
View Article and Find Full Text PDF