Publications by authors named "Jae K Jang"

The current need for the upgradation of biohydrogen generation and contaminant removal in two-chambered microbial electrolysis cells (MECs) compels the design of alternatives i.e. bioelectrochemical systems (BESs) to conventional reactors.

View Article and Find Full Text PDF

The generation of spectrally pure microwave signals is a critical functionality in fundamental and applied sciences, including metrology and communications. Optical frequency combs enable the powerful technique of optical frequency division (OFD) to produce microwave oscillations of the highest quality. Current implementations of OFD require multiple lasers, with space- and energy-consuming optical stabilization and electronic feedback components, resulting in device footprints incompatible with integration into a compact and robust photonic platform.

View Article and Find Full Text PDF

Kerr soliton combs operate in the anomalous group-velocity dispersion regime through the excitation of dissipative solitons. The generated bandwidth is largely dependent on the cavity dispersion, with higher-order dispersion contributing to dispersive-wave (DW) generation that allows for power enhancement of the comb lines at the wings of the spectrum. However, the spectral position of the DW is highly sensitive to the overall cavity dispersion, and the inevitable dimension variations that occur during the fabrication process result in deviations in the DW emission wavelength.

View Article and Find Full Text PDF

Microbial electrolysis cells (MECs) have attracted significant interest as sustainable green hydrogen production devices because they utilize the environmentally friendly biocatalytic oxidation of organic wastes and electrochemical proton reduction with the support of relatively lower external power compared to that used by water electrolysis. However, the commercialization of MEC technology has stagnated owing to several critical technological challenges. Recently, many attempts have been made to utilize nanomaterials in MECs owing to the unique physicochemical properties of nanomaterials originating from their extremely small size (at least <100 nm in one dimension).

View Article and Find Full Text PDF

Microresonator-based platforms with ${\chi ^{(2)}}$ nonlinearities have the potential to perform frequency conversion at high efficiencies and ultralow powers with small footprints. The standard doctrine for achieving high conversion efficiency in cavity-based devices requires "perfect matching," that is, zero phase mismatch while all relevant frequencies are precisely at a cavity resonance, which is difficult to achieve in integrated platforms due to fabrication errors and limited tunabilities. In this Letter, we show that the violation of perfect matching does not necessitate a reduction in conversion efficiency.

View Article and Find Full Text PDF

Synchronization is a ubiquitous phenomenon in nature that manifests as the spectral or temporal locking of coupled nonlinear oscillators. In the field of photonics, synchronization has been implemented in various laser and oscillator systems, enabling applications including coherent beam combining and high-precision pump-probe measurements. Recent experiments have also shown time-domain synchronization of Kerr frequency combs via coupling of two separate oscillators operating in the dissipative soliton [i.

View Article and Find Full Text PDF

We investigate the conversion efficiency (CE) of soliton modelocked Kerr frequency combs. Our analysis reveals three distinct scaling regimes of CE with the cavity free spectral range (FSR), which depends on the relative contributions of the coupling and propagation loss to the total cavity loss. Our measurements, for the case of critical coupling, verify our theoretical prediction over a range of FSRs and pump powers.

View Article and Find Full Text PDF

The aim of this work is to study for concurrent harvesting bioelectricity and struvite mineral from mineral rich wastewater containing with nitrogen (N) and phosphorous (P) contents using MFCs and a chemical precipitation system. Whole reaction was constructed to sequentially run hybrid reactor (consisting of MFCs and struvite precipitation), gravitational sedimentation, nitrogen purging and MFCs. The MFCs generated around 6.

View Article and Find Full Text PDF

The need for solving optimization problems is prevalent in various physical applications, including neuroscience, network design, biological systems, socio-economics, and chemical reactions. Many of these are classified as non-deterministic polynomial-time hard and thus become intractable to solve as the system scales to a large number of elements. Recent research advances in photonics have sparked interest in using a network of coupled degenerate optical parametric oscillators (DOPOs) to effectively find the ground state of the Ising Hamiltonian, which can be used to solve other combinatorial optimization problems through polynomial-time mapping.

View Article and Find Full Text PDF

Residual veterinary antibiotics have been detected in livestock wastewater treatment plants. Despite the long retention time, antibiotic treatment efficiency has shown clear limitations. In this study, we evaluated submerged membrane photobioreactors (SMPBR) during sulfonamide antibiotic-containing livestock wastewater treatment under mixotrophic and photoautotrophic conditions.

View Article and Find Full Text PDF

Squeezed states are a primary resource for continuous-variable (CV) quantum information processing. To implement CV protocols in a scalable and robust way, it is desirable to generate and manipulate squeezed states using an integrated photonics platform. In this Letter, we demonstrate the generation of quadrature-phase squeezed states in the radio-frequency carrier sideband using a small-footprint silicon-nitride microresonator with a dual-pumped four-wave-mixing process.

View Article and Find Full Text PDF

We explore the influence of pressure on the magnetic ground state of the heavy-fermion antiferromagnet (ferromagnet) CeAuSb 2 (CeAgSb 2 ) using first-principles calculations. The total-energy differences obtained by including the spin-orbit interactions and the on-site Coulomb potential for the Ce-derived 4-orbitals are necessary to realize the accurate magnetic ground state of CeSb 2 (: Au and Ag). According to our results, the appearance of a new magnetic phase of CeAuSb 2 (CeAgSb 2 ) at the pressure of 2.

View Article and Find Full Text PDF

In this work, three multi-electrode-embedded microbial fuel cells (MFCs) were connected sequentially and operated in series and parallel modes, fed by effluent of an anaerobic digester continuously operated using swine wastewater. The anaerobic digester achieved ~0.75 CH L d while removing 71.

View Article and Find Full Text PDF

We demonstrate various regimes of synchronization in systems of two coupled cavity soliton-based Kerr frequency combs. We show subharmonic, harmonic, and harmonic-ratio synchronization of coupled microresonators, and reveal their dynamics in the form of Arnold tongues, structures that are ubiquitous in nonlinear dynamical systems. Our experimental results are well corroborated by numerical simulations based on coupled Lugiato-Lefever equations.

View Article and Find Full Text PDF

We demonstrate an approach for automated Kerr comb generation in the normal group-velocity dispersion (GVD) regime. Using a coupled-ring geometry in silicon nitride, we precisely control the wavelength location and splitting strength of avoided mode crossings to generate low-noise frequency combs with pump-to-comb conversion efficiencies of up to 41%, which is the highest reported to date for normal-GVD Kerr combs. Our technique enables on-demand generation of a high-power comb source for applications such as wavelength-division multiplexing in optical communications.

View Article and Find Full Text PDF

Nakai (AGN) is a crucial oriental medicinal herb that grows especially in Korea and the Far-East countries. It contains chemically active compounds like pyranocoumarins, polyacetylenes and essential oils, which might be useful for treatment of several chronic diseases. It has been used for centuries as a traditional medicine in Southeast Asia, but in Western countries is used as a functional food and a major ingredient of several herbal products.

View Article and Find Full Text PDF

In order to assess the effects of biofilm capacitance on self-recovering voltage reversals, the restored current is determined and compared with the measured biofilm capacitance by analyzing the results of electrochemical impedance spectroscopy. This comparison demonstrates that self-recovering voltage reversals are caused by temporary damage to, and the recovery of, biofilm capacitance which arises due to the ability of redox enzymes in the electron transfer system to temporarily store electrons. Thus, the development of procedures for voltage reversal control and for the maintenance of serially connected microbial fuel cells (MFCs) should take into account such temporary voltage reversal phenomenon.

View Article and Find Full Text PDF

Mixotrophic microalgal growth gives a great premise for wastewater treatment based on photoautotrophic nutrient utilization and heterotrophic organic removal while producing renewable biomass. There remains a need for a control strategy to enrich them in a photobioreactor. This study performed a series of batch experiments using a mixotroph, , to characterize optimal guidelines of mixotrophic growth based on a statistical design of the experiment.

View Article and Find Full Text PDF

var. is considered as a potential therapeutic agent against mithridatism, calculous, indigestion, pneumonia, hepatitis, and tumors as well as good seasoned vegetable in Far East countries. Phytoene synthase (PSY), phytoene desaturase (PDS) ξ-carotene desaturase (ZDS), lycopene β-cyclase (LCYB), lycopene ε-cyclase (LCYE), ε-ring carotene hydroxylase (CHXB), and zeaxanthin epoxidase (ZDS) are vital enzymes in the carotenoid biosynthesis pathway.

View Article and Find Full Text PDF

The generation of temporal cavity solitons in microresonators results in coherent low-noise optical frequency combs that are critical for applications in spectroscopy, astronomy, navigation or telecommunications. Breather solitons also form an important part of many different classes of nonlinear wave systems, manifesting themselves as a localized temporal structure that exhibits oscillatory behaviour. To date, the dynamics of breather solitons in microresonators remains largely unexplored, and its experimental characterization is challenging.

View Article and Find Full Text PDF

We experimentally and theoretically investigate the dynamics of microresonator-based frequency comb generation assisted by mode coupling in the normal group-velocity dispersion (GVD) regime. We show that mode coupling can initiate intracavity modulation instability (MI) by directly perturbing the pump-resonance mode. We also observe the formation of a low-noise comb as the pump frequency is tuned further into resonance from the MI point.

View Article and Find Full Text PDF

To produce onion vinegar with high efficiency, various fermentation conditions, such as varying initial ethanol concentrations and the addition of ethanol or onion juice were optimized. KFCC 11476P consumed ethanol at a rate of 0.125-0.

View Article and Find Full Text PDF

We demonstrate the operation of an all-optical buffer based on temporal cavity solitons stored in a nonlinear passive fiber ring resonator. Unwanted acoustic interactions between neighboring solitons are suppressed by modulating the phase of the external laser driving the cavity. A new locking scheme is presented that allows the buffer to operate with an arbitrarily large number of cavity solitons in the loop.

View Article and Find Full Text PDF

Heat shock protein (Hsp)70 is a molecular chaperone that maintains protein homoeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. However, the mechanisms by which Hsp70 balances these opposing functions under stress conditions remain unknown. Here, we demonstrate that Hsp70 preferentially facilitates protein refolding after stress, gradually switching to protein degradation via a mechanism dependent on ARD1-mediated Hsp70 acetylation.

View Article and Find Full Text PDF

Polyester cloth (PC) was selected as a prospective inexpensive substitute separator material for microbial fuel cells (MFCs). PC was compared with a traditional Nafion proton exchange membrane (PEM) as an MFC separator by analyzing its physical and electrochemical properties. A single layer of PC showed higher mass transfer (.

View Article and Find Full Text PDF