Drug-resistance (DR) in many bacterial pathogens often arises from the repetitive formation of drug-tolerant bacilli, known as persisters. However, it is unclear whether (Mtb), the bacterium that causes tuberculosis (TB), undergoes a similar phenotypic transition. Recent metabolomics studies have identified that a change in trehalose metabolism is necessary for Mtb to develop persisters and plays a crucial role in metabolic networks of DR-TB strains.
View Article and Find Full Text PDFUnlabelled: Tuberculosis (TB) is a leading cause of death among infectious diseases worldwide due to latent TB infection, which is the critical step for the successful pathogenic cycle. In this stage resides inside the host in a dormant and antibiotic-tolerant state. Latent TB infection can also lead to multisystemic diseases because invades virtually all organs, including ocular tissues.
View Article and Find Full Text PDFUnlabelled: Tuberculosis (TB) is a leading cause of death among infectious diseases worldwide due to latent TB infection, which is the critical step for the successful pathogenic cycle. In this stage, resides inside the host in a dormant and antibiotic-tolerant state. Latent TB infection can lead to a multisystemic diseases because invades virtually all organs, including ocular tissues.
View Article and Find Full Text PDFTuberculosis (TB), caused by (Mtb), is the leading cause of death worldwide by infectious disease. Treatment of Mtb infection requires a six-month course of multiple antibiotics, an extremely challenging regimen necessitated by Mtb's ability to form drug-tolerant persister cells. Mtb persister formation is dependent on the trehalose catalytic shift, a stress-responsive metabolic remodeling mechanism in which the disaccharide trehalose is liberated from cell surface glycolipids and repurposed as an internal carbon source to meet energy and redox demands.
View Article and Find Full Text PDFParkinson's disease (PD) is the most common neurodegenerative disease characterized by movement disorder. Despite current therapeutic efforts, PD progression and the loss of dopaminergic neurons in the substantia nigra remain challenging to prevent due to the complex and unclear molecular mechanism involved. We adopted a phenotype-based drug screening approach with neuronal cells to overcome these limitations.
View Article and Find Full Text PDFThe P53-destabilizing TBC1D15-NOTCH protein interaction promotes self-renewal of tumor-initiating stem-like cells (TICs); however, the mechanisms governing the regulation of this pathway have not been fully elucidated. Here, we show that TBC1D15 stabilizes NOTCH and c-JUN through blockade of E3 ligase and CDK8 recruitment to phosphodegron sequences. Chromatin immunoprecipitation (ChIP-seq) analysis was performed to determine whether TBC1D15-dependent NOTCH1 binding occurs in TICs or non-TICs.
View Article and Find Full Text PDFThere has been extensive research on electrospun ferroelectric nanoparticle-doped poly L-lactic acid (PLA) nanofiber web piezoelectric devices. In this study, BaTiO nanoparticles (BTNPs) were incorporated into the PLA to enhance the piezoelectric properties. The composite nanofiber webs were characterized using field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction.
View Article and Find Full Text PDFThioredoxin-interacting protein (TXNIP) has emerged as a key player in cancer and diabetes since it targets thioredoxin (TRX)-mediated redox regulation and glucose transporter (GLUT)-mediated metabolism. TXNIP consists of two arrestin (ARR, N-ARR and C-ARR) domains at its amino-terminus and two PPxY (PY) motifs and a di-leucine (LL) motif for endocytosis at its carboxyl-terminus. Here, we report that TXNIP shuffles between TRX and GLUTs to regulate homeostasis of intracellular oxidative stress and glucose metabolism.
View Article and Find Full Text PDFThis study proposes the use of physical unclonable functions employing circularly polarized light emission (CPLE) from nematic liquid crystal (NLC) ordering directed by helical nanofilaments in a mixed system composed of a calamitic NLC mixture and a bent-core molecule. To achieve this, an intrinsically nonemissive NLC is blended with a high concentration of a luminescent rod-like dye, which is miscible up to 10 wt % in the calamitic NLC without a significant decrease in the degree of alignment. The luminescence dissymmetry factor of CPLEs in the mixed system strongly depends on the degree of alignment of the dye-doped NLCs.
View Article and Find Full Text PDFChiral perovskites have garnered significant attention, owing to their chiroptical properties and emerging applications. Current fabrication methods often involve complex chemical synthesis routes. Herein, an alternative approach for introducing chirality into nonchiral hybrid organic-inorganic perovskites (HOIPs) using nanotemplates composed of cholesteric polymeric networks is proposed.
View Article and Find Full Text PDFBackground And Study Aims: The introduction of direct-acting antiviral (DAA) drugs has dramatically improved chronic hepatitis C (CHC) treatment. The pangenotype DAA therapy glecaprevir/pibrentasvir (G/P) was recently recommended for treating CHC in Korea. Unfortunately, given its recent introduction, little real-world data from a Korean population exists.
View Article and Find Full Text PDFTwo types of binary mixtures were prepared. One consisted of a calamitic nematogen and bent-core molecule with a helical nanofilament, whereas the other contained a calamitic nematogen and bent-core molecule with a dark conglomerate. The chiroptical features of these two mixtures were investigated using polarized optical microscopy and circular dichroism.
View Article and Find Full Text PDFHuman hepatocyte culture system represents by far the most physiologically relevant model for our understanding of liver biology and diseases; however, its versatility has been limited due to the rapid and progressive loss of genuine characteristics, indicating the inadequacy of in vitro milieu for fate maintenance. This study, therefore, is designed to define environmental requirements necessary to sustain the homeostasis of terminally differentiated hepatocytes. Our study reveals that the supplementation of dimethyl sulfoxide (DMSO) is indispensable in mitigating fate deterioration and promoting adaptation to the in vitro environment, resulting in the restoration of tight cell-cell contact, cellular architecture, and polarity.
View Article and Find Full Text PDFIn this paper, chiral intermediate phases composed of two achiral molecules are fabricated by utilizing nanophase separation and molecular hierarchical self-organization. An achiral bent-core guest molecule, exhibiting a calamitic nematic and a dark conglomerate phase according to the temperature, is mixed with another achiral bent-core host molecule possessing a helical nanofilament to separate the phases between them. Two nanosegregated phases are identified, and considerable chiroptical changes, such as circular dichroism and circularly polarized luminescence, are detected at the transition temperatures between the different nanophase-separated states.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2022
Suboptimal efficacy of the current antibiotic regimens and frequent emergence of antibiotic-resistant (Mtb), an etiological agent of tuberculosis (TB), render TB the world's deadliest infectious disease before the COVID-19 outbreak. Our outdated TB treatment method is designed to eradicate actively replicating populations of Mtb. Unfortunately, accumulating evidence suggests that a small population of Mtb can survive antimycobacterial pressure of antibiotics by entering a "persister" state (slowly replicating or non-replicating and lacking a stably heritable antibiotic resistance, termed drug tolerance).
View Article and Find Full Text PDFSpermidine is essential for cellular growth and acts as a prerequisite of hypusination, a post-translational modification of eukaryotic initiation factor 5A (eIF5A), allowing the translation of polyproline-containing proteins. Here, we show that oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) increases spermidine synthesis and eIF5A hypusination to enhance expression of polyproline-containing latency-associated nuclear antigen (LANA) for viral episomal maintenance. KSHV upregulates intracellular spermidine levels by dysregulating polyamine metabolic pathways in three-dimensional (3D) culture and 2D de novo infection conditions.
View Article and Find Full Text PDFThe purpose of this study was to evaluate the restoration of original anatomy after fixation of sawbone fractures using case-specific 3D printing plates based on virtual reduction (VR). Three-dimensional models of 28 tibia sawbones with cortical marking holes were obtained. The sawbones were fractured at various locations of the shaft and 3D models were obtained.
View Article and Find Full Text PDFFas-associated factor 1 (FAF1) is a scaffolding protein that plays multiple functions, and dysregulation of FAF1 is associated with many types of diseases such as cancers. FAF1 contains multiple ubiquitin-related domains (UBA, UBL1, UBL2, UAS, and UBX), each domain interacting with a specific partner. In particular, the interaction of UBL1 with heat shock protein 70 (Hsp70) is associated with tumor formation, although the molecular understanding remains unknown.
View Article and Find Full Text PDFUnlike other heterotrophic bacteria, (Mtb) can co-catabolize a range of carbon sources simultaneously. Evolution of Mtb within host nutrient environment allows Mtb to consume the host's fatty acids as a main carbon source during infection. The fatty acid-induced metabolic advantage greatly contributes to Mtb's pathogenicity and virulence.
View Article and Find Full Text PDFNontuberculous mycobacterial pulmonary diseases (NTM-PDs) are emerging as global health threats with issues of antibiotic resistance. Accumulating evidence suggests that the gut-lung axis may provide novel candidates for host-directed therapeutics against various infectious diseases. However, little is known about the gut-lung axis in the context of host protective immunity to identify new therapeutics for NTM-PDs.
View Article and Find Full Text PDFManagement of peripheral nerve defects is a complicated problem in clinical contexts. Autologous nerve grafting, a gold standard for surgical treatment, has been well known to have several limitations, such as donor site morbidity, a limited amount of available donor tissue, and size mismatches. Acellular nerve allografts (ANAs) have been developed as an alternative and have been applied clinically with favorable outcomes.
View Article and Find Full Text PDFMycobacterium tuberculosis can cocatabolize a range of carbon sources. Fatty acids are among the carbons available inside the host's macrophages. Here, we investigated the metabolic changes of the fatty acid-induced dormancy-like state of and its involvement in the acquisition of drug tolerance.
View Article and Find Full Text PDF