Melanoma is an aggressive skin cancer with a high risk of cancer-related deaths, and inducing apoptosis in melanoma cells is a promising therapeutic strategy. This study investigates the anti-tumor potential of a novel lucknolide derivative LA-UC as a therapeutic candidate for melanoma. Lucknolide A (LA), a tricyclic ketal-lactone metabolite isolated from marine-derived sp.
View Article and Find Full Text PDFRNA, one of the major biological macromolecules, has been considered as an attractive building material for bottom-up fabrication of nanostructures in the past few decades due to advancements in RNA biology, RNA chemistry and RNA nanotechnology. Most recently, an isothermal enzymatic nucleic acid amplification method termed rolling circle transcription (RCT), which achieves a large-scale synthesis of RNA nanostructures, has emerged as one of fascinating techniques for RNAi-based therapies. Herein, we proposed a newly designed RCT method for synthesis of polymeric siRNA nanoflower, referred to 'RCT and annealing-generated polymeric siRNA (RAPSI)': (1) Amplification of the antisense strand of siRNA via RCT process and (2) annealing of chimeric sense strand containing 3'-terminal DNA nucleotides that provide enzyme cleavage sites.
View Article and Find Full Text PDFThe aim of this study is to establish the safe and effective ocular delivery system of therapeutic small interfering RNA (siRNA) in corneal neovascularization therapy. The major hurdle present in siRNA-based corneal neovascularization (CNV) therapy is severe cytotoxicity caused by repetitive drug treatment. A reducible branched polyethylenimine (rBPEI)-based nanoparticle (NP) system is utilized as a new siRNA carrier as a hope for CNV therapy.
View Article and Find Full Text PDF