Publications by authors named "Jae Hee Jeong"

Purpose: To establish a deep learning artificial intelligence model to predict the risk of long-term fellow eye neovascularization in unilateral type 3 macular neovascularization (MNV).

Methods: This retrospective study included 217 patients (199 in the training/validation of the AI model and 18 in the testing set) with a diagnosis of unilateral type 3 MNV. The purpose of the AI model was to predict fellow eye neovascularization within 24 months after the initial diagnosis.

View Article and Find Full Text PDF

Concanavalin A (ConA) has an intrinsic binding affinity to carbohydrates. Here, we obtained Co-Ca-ConA (2.83 Å, PDB: 8I7Q) X-ray crystallography by substituting native ConA (Mn-Ca); it has binding selectivity for high-mannose -glycan similar to native ConA.

View Article and Find Full Text PDF

Protein quality control mechanisms are essential for maintaining cellular integrity, and the HtrA family of serine proteases plays a crucial role in handling folding stress in prokaryotic periplasm. Escherichia coli harbors three HtrA members, namely, DegS, DegP, and DegQ, which share a common domain structure. MucD, a putative HtrA family member that resembles DegP, is involved in alginate biosynthesis regulation and the stress response.

View Article and Find Full Text PDF

This study aimed to isolate and identify antibacterial compounds from () that are effective against the Streptococcus mutans KCCM 40105 strain. First, was extracted using varying concentrations of ethanol, and the resulting antibacterial activity was evaluated. The 30% ethanol extract of showed high activity.

View Article and Find Full Text PDF

(SMV) is a member of the genus in the family . Legume crops are often infected by SMV. SMV has not been naturally isolated from sword bean () in South Korea.

View Article and Find Full Text PDF

CRISPR-Cas systems are adaptive immune systems in bacteria and archaea that provide resistance against phages and other mobile genetic elements. To fight against CRISPR-Cas systems, phages and archaeal viruses encode anti-CRISPR (Acr) proteins that inhibit CRISPR-Cas systems. The expression of acr genes is controlled by anti-CRISPR-associated (Aca) proteins encoded within acr-aca operons.

View Article and Find Full Text PDF

BL-5C is an in-vacuum undulator beamline dedicated to macromolecular crystallography (MX) at the 3 GeV Pohang Light Source II in Korea. The beamline delivers X-ray beams with a focal spot size of 200 µm × 40 µm (FWHM, H × V) over the energy range 6.5-16.

View Article and Find Full Text PDF

Immunity-related GTPase B10 (IRGB10) belongs to the interferon (IFN)-inducible GTPases, a family of proteins critical to host defense. It is induced by IFNs after pathogen infection, and plays a role in liberating pathogenic ligands for the activation of the inflammasome by directly disrupting the pathogen membrane. Although IRGB10 has been intensively studied owing to its functional importance in the cell-autonomous immune response, the molecular mechanism of IRGB10-mediated microbial membrane disruption is still unclear.

View Article and Find Full Text PDF

Vaccines and therapeutics are urgently needed for the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we screen human monoclonal antibodies (mAb) targeting the receptor binding domain (RBD) of the viral spike protein via antibody library constructed from peripheral blood mononuclear cells of a convalescent patient. The CT-P59 mAb potently neutralizes SARS-CoV-2 isolates including the D614G variant without antibody-dependent enhancement effect.

View Article and Find Full Text PDF

Caspase recruitment domain (CARD)-only proteins (COPs), regulate apoptosis, inflammation, and innate immunity. They inhibit the assembly of NOD-like receptor complexes such as the inflammasome and NODosome, which are molecular complexes critical for caspase-1 activation. COPs are known to interact with either caspase-1 CARD or RIP2 CARD via a CARD-CARD interaction, and inhibit caspase-1 activation or further downstream signaling.

View Article and Find Full Text PDF

β-Lactam antibiotics that inhibit penicillin-binding proteins (PBPs) have been widely used in the treatment of bacterial infections. However, the molecular basis underlying the different inhibitory potencies of β-lactams against specific PBPs is not fully understood. Here, we present the crystal structures of penicillin-binding protein D2 (PBPD2) from , a Gram-positive foodborne bacterial pathogen that causes listeriosis in humans.

View Article and Find Full Text PDF

Cell death-inducing DFF45-like effector (CIDE) domains, initially identified in apoptotic nucleases, form a family with diverse functions ranging from cell death to lipid homeostasis. Here we show that the CIDE domains of and human apoptotic nucleases Drep2, Drep4, and DFF40 all form head-to-tail helical filaments. Opposing positively and negatively charged interfaces mediate the helical structures, and mutations on these surfaces abolish nuclease activation for apoptotic DNA fragmentation.

View Article and Find Full Text PDF

Unlabelled: Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a multifunctional adaptor protein involved in important processes of cellular signaling, including innate immunity and apoptosis. TRAF family member-associated NF-kappaB activator (TANK) has been identified as a competitive intracellular inhibitor of TRAF2 function. Although TRAF recognition by various receptors has been studied extensively in the field of TRAF-mediated biology, molecular and functional details of TANK recognition and interaction with TRAF1 have not been studied.

View Article and Find Full Text PDF

The synaptonemal complex protein 1 (SYCP1) is the main structural element of transverse filaments (TFs) of the synaptonemal complex (SC), which is a meiosis-specific complex structure formed at the synapse of homologue chromosomes to hold them together. The N-terminal domain of SYCP1 is known to be located within the central elements (CEs), whereas the C-terminal domain is located toward lateral elements (LEs). SYCP1 is a well-known meiosis marker that is also known to be a prognostic marker in the early stage of several cancers including breast, gliomas, and ovarian cancers.

View Article and Find Full Text PDF

Ketosteroid isomerase (3-oxosteroid Δ(5)-Δ(4)-isomerase, KSI) from Pseudomonas putida catalyzes allylic rearrangement of the 5,6-double bond of Δ(5)-3-ketosteroid to 4,5-position by stereospecific intramolecular transfer of a proton. The active site of KSI is formed by several hydrophobic residues and three catalytic residues (Tyr14, Asp38, and Asp99). In this study, we investigated the role of a hydrophobic Met112 residue near the active site in the catalysis, steroid binding, and stability of KSI.

View Article and Find Full Text PDF

TNF-receptor associated factor (TRAF) proteins are key adaptor molecules containing E3 ubiquitin ligase activity that play a critical role in immune cell signaling. TRAF1 is a unique family of TRAF lacking the N-terminal RING finger domain. TRAF1 is an important scaffold protein that participates in TNFR2 signaling in T cells as a negative or positive regulator via direct interaction with TRAF2, which has recently been identified as a pro-apoptotic regulator in neuronal cell death.

View Article and Find Full Text PDF

Apoptosis repressor with caspase recruiting domain (ARC) is a multifunctional inhibitor of apoptosis that is unusually over-expressed or activated in various cancers and in the state of the pulmonary hypertension. Therefore, ARC might be an optimal target for therapeutic intervention. Human ARC is composed of two distinct domains, N-terminal caspase recruiting domain (CARD) and C-terminal P/E (proline and glutamic acid) rich domain.

View Article and Find Full Text PDF

YgjG is a putrescine aminotransferase enzyme that transfers amino groups from compounds with terminal primary amines to compounds with an aldehyde group using pyridoxal-5'-phosphate (PLP) as a cofactor. Previous biochemical data show that the enzyme prefers primary diamines, such as putrescine, over ornithine as a substrate. To better understand the enzyme's substrate specificity, crystal structures of YgjG from Escherichia coli were determined at 2.

View Article and Find Full Text PDF

EgtD is an S-adenosyl-l-methionine (SAM)-dependent histidine N,N,N-methyltransferase that catalyzes the formation of hercynine from histidine in the ergothioneine biosynthetic process of Mycobacterium smegmatis. Ergothioneine is a secreted antioxidant that protects mycobacterium from oxidative stress. Here, we present three crystal structures of EgtD in the apo form, the histidine-bound form, and the S-adenosyl-l-homocysteine (SAH)/histidine-bound form.

View Article and Find Full Text PDF

The type VI secretion system (T6SS) is a macromolecular complex that is conserved in Gram-negative bacteria. The T6SS secretes effector proteins into recipient cells in a contact-dependent manner in order to accomplish cooperative and competitive interactions with the cells. Although the composition and mechanism of the T6SS have been intensively investigated across many Gram-negative bacteria, to date structural information on T6SS components from the important pathogen Vibrio cholerae has been rare.

View Article and Find Full Text PDF

Penicillin-binding proteins (PBPs), which mediate the peptidoglycan biosynthetic pathway in the bacterial cell wall, have been intensively investigated as a target for the design of antibiotics. In this study, PBPD2, a low-molecular-weight PBP encoded by lmo2812 from Listeria monocytogenes, was overexpressed in Escherichia coli, purified and crystallized at 295 K using the sitting-drop vapour-diffusion method. The crystal belonged to the primitive orthorhombic space group P212121, with unit-cell parameters a = 37.

View Article and Find Full Text PDF

The crystal structure of Ton1535, a hypothetical protein from Thermococcus onnurineus NA1, was determined at 2.3 Å resolution. With two antiparallel α-helices in a helix-turn-helix motif as a repeating unit, Ton1535 consists of right-handed coiled N- and C-terminal regions that are stacked together using helix bundles containing a left-handed helical turn.

View Article and Find Full Text PDF

The members of the ARM/HEAT repeat-containing protein superfamily in eukaryotes have been known to mediate protein-protein interactions by using their concave surface. However, little is known about the ARM/HEAT repeat proteins in prokaryotes. Here we report the crystal structure of TON1937, a hypothetical protein from the hyperthermophilic archaeon Thermococcus onnurineus NA1.

View Article and Find Full Text PDF

Penicillin-binding proteins (PBPs), which catalyze the biosynthesis of the peptidoglycan chain of the bacterial cell wall, are the major molecular target of bacterial antibiotics. Here, we present the crystal structures of the bifunctional peptidoglycan glycosyltransferase (GT)/transpeptidase (TP) PBP4 from Listeria monocytogenes in the apo-form and covalently linked to two β-lactam antibiotics, ampicillin and carbenicillin. The orientation of the TP domain with respect to the GT domain is distinct from that observed in the previously reported structures of bifunctional PBPs, suggesting interdomain flexibility.

View Article and Find Full Text PDF