Single-walled carbon nanotubes (SWNTs) exhibit distinct electronic properties, categorized as metallic or semiconducting, determined by their chirality. The precise and selective separation of these electronic types is pivotal for advancing nanotechnology applications. While conventional gel chromatography has been widely employed for large-scale separations, its limitations in addressing microscale dynamics and electronic-type differentiation have persisted.
View Article and Find Full Text PDFWhite organic light-emitting diodes (OLEDs) represent a significant technology in the display industry for the achievement of full color. However, sophisticated technologies are required for white light emission. In this paper, we developed a simple white light-emitting display device using a quantum-dot (QD) film and a greenish-blue OLED.
View Article and Find Full Text PDFHigh-frequency noise exceeding 1 kHz has emerged as a pressing public health issue in industrial and occupational settings. In response to this challenge, the present study explores the development of a graphene oxide-polyethyleneimine (GO-PEI) foam (GPF) featuring a hierarchically porous structure. The synthesis and optimization of GPF were carried out using a range of analytical techniques, including Raman spectroscopy, scanning electron microscopy (SEM), Braunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR).
View Article and Find Full Text PDFDynamic bonds can facilitate reversible formation and dissociation of connections in response to external stimuli, endowing materials with shape memory and self-healing capabilities. Temperature is an external stimulus that can be easily controlled through heat. Dynamic covalent bonds in response to temperature can reversibly connect, exchange, and convert chains in the polymer.
View Article and Find Full Text PDFIn addressing the increasing demand for wearable sensing systems, the performance and lifespan of such devices must be improved by enhancing their sensitivity and healing capabilities. The present work introduces an innovative method for synthesizing a healable disulfide bond contained in a polydimethylsiloxane network (PDMS-SS) that incorporates ionic salts, which is designed to serve as a highly effective dielectric layer for capacitive tactile sensors. Within the polymer network structure, the cross-linking agent pentaerythritol tetrakis 3-mercaptopropionate (PTKPM) forms reversible disulfide bonds while simultaneously increasing polymer softness and the dielectric constant.
View Article and Find Full Text PDFUsing a thermal evaporator, various porous Cu films were deposited according to the deposition pressure. CuO films were formed by post heat treatment in the air. Changes in morphological and structural characteristics of films were analyzed using field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD).
View Article and Find Full Text PDFBackground/aims: The adenoma detection rate (ADR) does not reflect the complete detection of every adenoma during colonoscopy; thus, many surrogate indicators have been suggested. This study investigated whether the ADR and surrogate quality indicators reflect the adenoma miss rate (AMR) when performing qualified colonoscopy.
Methods: We performed a prospective, multicenter, cross-sectional study of asymptomatic examinees aged 50 to 75 years who underwent back-to-back screening colonoscopies by eight endoscopists.
From the viewpoint of the device performance, the fabrication and patterning of oxide-metal-oxide (OMO) multilayers (MLs) as transparent conductive oxide electrodes with a high figure of merit have been extensively investigated for diverse optoelectronic and energy device applications, although the issues of their general concerns about possible shortcomings, such as a more complicated fabrication process with increasing cost, still remain. However, the underlying mechanism by which a thin metal mid-layer affects the overall performance of prepatterned OMO ML electrodes has not been fully elucidated. In this study, indium tin oxide (ITO)/silver (Ag)/ITO MLs are fabricated using an in-line sputtering method for different Ag thicknesses on glass substrates.
View Article and Find Full Text PDFAchieving high ionic conductivity, wide voltage window, and good mechanical strength in a single material remains a key challenge for polymer-based electrolytes for use in solid-state supercapacitors (SCs). Herein, we report cross-linked composite gel polymer electrolytes (CGPEs) based on multi-cross-linkable H-shaped poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) tetrablock copolymer precursors, SiO nanoparticles, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, an ionic liquid (IL). Self-standing CGPE membranes with a high IL content were prepared using in situ cross-linking reactions between the silane groups present in the precursor and the SiO surface.
View Article and Find Full Text PDFDemand for the fabrication of high-performance, transparent electronic devices with improved electronic and mechanical properties is significantly increasing for various applications. In this context, it is essential to develop highly transparent and conductive electrodes for the realization of such devices. To this end, in this work, a chemical vapor deposition (CVD)-grown graphene was transferred to both glass and polyethylene terephthalate (PET) substrates that had been pre-coated with an indium tin oxide (ITO) layer and then subsequently patterned by using a laser-ablation method for a low-cost, simple, and high-throughput process.
View Article and Find Full Text PDFNanolenses of alkali metal halides can be a unique optical element due to their hygroscopicity, optical transparency, and high mobility of constituent ions. It has been challenging, however, to form and place such lenses in a controlled manner. Here, we report micro/nanolenses of various alkali metal halides arranged as a one-dimensional (1D) array, using the exterior of single-walled carbon nanotubes (SWNTs) as a template for forming the lenses.
View Article and Find Full Text PDFMicromachines (Basel)
January 2019
In this work, a study on a semi-floating-gate synaptic transistor (SFGST) is performed to verify its feasibility in the more energy-efficient hardware-driven neuromorphic system. To realize short- and long-term potentiation (STP/LTP) in the SFGST, a poly-Si semi-floating gate (SFG) and a SiN charge-trap layer are utilized, respectively. When an adequate number of holes are accumulated in the SFG, they are injected into the nitride charge-trap layer by the Fowler⁻Nordheim tunneling mechanism.
View Article and Find Full Text PDFMicromachines (Basel)
December 2018
The triboelectric generator (TEG) is a strong candidate for low-power sensors utilized in the Internet of Things (IoT) technology. Within IoT technologies, advanced driver assistance system (ADAS) technology is included within autonomous driving technology. Development of an energy source for sensors necessary for operation becomes an important issue, since a lot of sensors are embedded in vehicles and require more electrical energy.
View Article and Find Full Text PDFThese days, the demand on electronic systems operating at high temperature is increasing owing to bursting interest in applications adaptable to harsh environments on earth, as well as in the unpaved spaces in the universe. However, research on memory technologies suitable to high-temperature conditions have been seldom reported yet. In this work, a novel one-transistor dynamic random-access memory (1T DRAM) featuring the device channel with partially inserted wide-bandgap semiconductor material toward the high-temperature application is proposed and designed, and its device performances are investigated with an emphasis at 500 K.
View Article and Find Full Text PDFIn this work, the UV-Vis-NIR absorption spectrum of liquid-phase exfoliated two-dimensional (2D) MoS2 nanosheets, revealed two prominent peaks at 608 nm (2.04 eV) and 668 nm (1.86 eV).
View Article and Find Full Text PDFAs direct formation of p-type two-dimensional transition metal dichalcogenides (TMDC) films on substrates, tungsten disulfide (WS2) thin films were deposited onto sapphire glass substrate through shadow mask patterns by radio-frequency (RF) sputtering at different sputtering powers ranging from 60 W to 150 W and annealed by rapid thermal processing (RTP) at various high temperatures ranging from 500 °C to 800 °C. Based on scanning electron microscope (SEM) images and Raman spectra, better surface roughness and mode dominant E12g and A1g peaks were found for WS2 thin films prepared at higher RF sputtering powers. It was also possible to obtain high mobilities and carrier densities for all WS2 thin films based on results of Hall measurements.
View Article and Find Full Text PDFWe present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
March 2015
We demonstrate ablation of indium tin oxide (ITO) films onto both glass and polyethylene terephthalate (PET) substrates, using a Q-switched diode-pumped neodymium-doped yttrium vanadate laser (Nd:YVO4, λ = 1064 nm) incident on both the front and back sides of the substrate. From scanning electron microscope (SEM) images and depth profile data, ITO patterns that were laser-ablated onto glass from the back side showed a larger abrupt change in the ablated line width than those ablated from the front. However, there were only slight differences in ablated line widths due to the direction of the incident laser beam.
View Article and Find Full Text PDFA diode-pumped Q-switched neodymium-doped yttrium vanadate (Nd:YVO4, λ = 1064 nm) laser was applied to obtain graphene patterns on a photopolymer layer by direct ablation. In the transfer process of the graphene layer, the photopolymer was employed as a graphene supporting layer and it was not removed for the simplification of the process. The laser ablation was carried out on graphene/photopolymer double layers for various beam conditions.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
December 2014
Recently, graphene is gaining increasing popularity as one of the most functional materials for advanced electronic and optical devices owing to its high carrier mobility and optical transparency. Patterning the graphene calls for particular cares in line definition without carbon (C)-based residues that might be working as a leakage path. Thus, realization and processing of the graphene monolayer are very complicated and need to be stringently controlled.
View Article and Find Full Text PDFThermopower waves are a recently developed energy conversion concept utilizing dynamic temperature and chemical potential gradients to harvest electrical energy while the combustion wave propagates along the hybrid layers of nanomaterials and chemical fuels. The intrinsic properties of the core nanomaterials and chemical fuels in the hybrid composites can broadly affect the energy generation, as well as the combustion process, of thermopower waves. So far, most research has focused on the application of new core nanomaterials to enhance energy generation.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
December 2013
The major conjugated linoleic acid (CLA) isomers, c9,t11-CLA and t10,c12-CLA, have anticancer effects; however, the exact mechanisms underlying these effects are unknown. Evidence suggests that reversal of reduced gap junctional intercellular communication (GJIC) in cancer cells inhibits cell growth and induces cell death. Hence, we determined that CLA isomers enhance GJIC in human MCF-7 breast cancer cells and investigated the underlying molecular mechanisms.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
November 2013
In this work, using a Q-switched diode-pumped neodymium-doped yttrium vanadate (Nd:YVO4, lambda = 1064 nm) laser, a direct patterning of indium tin oxide (ITO) channel was realized on glass substrates and the results were compared and analyzed in terms of the effect of repetition rate, scanning speed on etching characteristics. The results showed that the laser conditions of 40 kHz repetition rate with a scanning speed of 500 mm/s were appropriate for the channeling of ITO electrodes. The length of laser-patterned channel was maintained at about 55 microm.
View Article and Find Full Text PDFA Q-switched diode-pumped neodymium-doped yttrium vanadate (Nd:YVO4, lambda = 1064 nm) laser was applied to obtain the indium tin oxide (ITO) patterns on flexible polyethylene terephthalate (PET) substrate by a direct etching method. After the ITO films were deposited on a soda-lime glass and PET substrate, laser ablations were carried out on the ITO films for various conditions and the laser ablated results on the ITO films were investigated and analyzed considering the effects of substrates on the laser etching. The laser ablated widths on ITO deposited on glass were found to be much narrower than those on ITO deposited on PET substrate, especially, at a higher scanning speed of laser beam such as 1000 mm/s and 2000 mm/s.
View Article and Find Full Text PDFWe report on how to quantify the binding affinity between a nanoparticle and chemical functional group using various experimental methods such as cantilever assay, PeakForce quantitative nanomechanical property mapping, and lateral force microscopy. For the immobilization of Au nanoparticles (AuNPs) onto a microscale silicon substrate, we have considered two different chemical functional molecules of amine and catecholamine (here, dopamine was used). It is found that catecholamine-modified surface is more effective for the functionalization of AuNPs onto the surface than the amine-modified surface, which has been shown from our various experiments.
View Article and Find Full Text PDF