The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the disparity between developed and developing countries for infectious disease surveillance and the sequencing of pathogen genomes. The majority of SARS-CoV-2 sequences published are from Europe, North America, and Asia. Between April 2020 and January 2022, 795 SARS-CoV-2-positive nares swabs from individuals in the U.
View Article and Find Full Text PDFThe biochemical mechanism by which mutations in nucleotide-binding oligomerization domain containing 2 (NOD2) cause Blau syndrome is unknown. Several studies have examined the effect of mutations associated with Blau syndrome in vitro, but none has looked at the implication of the mutations in vivo. To test the hypothesis that mutated NOD2 causes alterations in signaling pathways downstream of NOD2, we created a Nod2 knock-in mouse carrying the most common mutation seen in Blau syndrome, R314Q (corresponding to R334Q in humans).
View Article and Find Full Text PDFNucleotide-binding and oligomerization domain-2 (NOD2) is an intracellular protein involved in innate immunity and linked to chronic inflammatory diseases in humans. Further characterization of the full spectrum of proteins capable of binding to NOD2 may provide new insights into its normal functioning as well as the mechanisms by which mutated forms cause disease. Using a proteomics approach to study human THP-1 cells, we have identified 2'-5'-oligoadenylate synthetase type 2 (OAS2), a dsRNA binding protein involved in the pathway that activates RNase-L, as a new binding partner for NOD2.
View Article and Find Full Text PDFMicrobiology (Reading)
January 2007
Stable tetracycline resistance in Chlamydia suis is mediated by a family of genomic islands [the tet(C) islands] that are integrated into the chlamydial chromosome. The tet(C) islands contain several plasmid-specific genes, the tet(C) resistance gene and, in most cases, a novel insertion element (IScs605) encoding two predicted transposases. The hypothesis that IScs605 mediated the integration of the tet(C) resistance islands into the C.
View Article and Find Full Text PDFAntimicrob Agents Chemother
October 2004
Many strains of Chlamydia suis, a pathogen of pigs, express a stable tetracycline resistance phenotype. We demonstrate that this resistance pattern is associated with a resistance gene, tet(C), in the chlamydial chromosome. Four related genomic islands were identified in seven tetracycline-resistant C.
View Article and Find Full Text PDF