Publications by authors named "Jae Do Nam"

As three-dimensional (3D) printing has emerged as a new manufacturing technology, the demand for high-performance 3D printable materials has increased to ensure broad applicability in various load-bearing structures. In particular, the thixotropic properties of materials, which allow them to flow under applied external forces but resist flowing otherwise, have been reported to enable rapid and high-resolution printing owing to their self-standing and easily processable characteristics. In this context, graphene nanosheets exhibit unique π-π stacking interactions between neighboring sheets, likely imparting self-standing capability to low-viscosity inks.

View Article and Find Full Text PDF

Radar-absorbing materials (RAMs) covering the exterior surfaces of installed parts and assembled devices are crucial in absorbing most incident electromagnetic (EM) waves. This absorption minimizes reflected energy, thereby enhancing pilot safety and the stability of operating electronic devices without interference. Particularly, active stealth aircraft require effective protection from near- and far-field EM radiation across a wide spectrum of frequencies from both highly integrated electronic components and advanced enemy radars.

View Article and Find Full Text PDF

Efficient and effective use of biopolymers, such as starch, has increasingly prompted interest due to the current environmental challenges. However, starch-based composites still show poor ductility along with water and oxygen permeability, which may not meet the requirements for food packaging standards. In this study, modified starch (m-St), isolated from the avocado seed and synthesized with tert-butyl acetoacetate (t-BAA), was embedded into polylactic acid (PLA) to design new eco-friendly composites.

View Article and Find Full Text PDF

Antireflection coatings (ARCs) enhance optical clarity and improve light transmission by reducing glare and reflections. The application of conventional ARCs in flexible devices, however, is impeded by their lack of durability, particularly under bending deformation. We develop ARCs that withstand delamination and fracture, remaining intact even after 1000 bending cycles with a 5 cm bending radius.

View Article and Find Full Text PDF

The incorporation of porous structures into films and coatings can transform their properties for applications in optics, separation, electronics, and energy generation and storage. Packing nanoparticles (NPs) is a versatile approach for fabricating nanoporous films with a tunable structure and properties. The mechanical fragility of NP packing-based films and coatings, however, significantly impedes their widespread utilization.

View Article and Find Full Text PDF

Twisted and coiled actuators (TCAs), which are light but capable of producing significant power, were developed in recent times. After their introduction, there have been numerous improvements in performance, including development of techniques such as actuation strain and heating methods. However, the development of robots using TCA is still in its early stages.

View Article and Find Full Text PDF

As electromagnetic (EM) pollution continues to increase, electromagnetic interference (EMI) shielding materials have been intensively evaluated in terms of two main shielding mechanisms of reflection and absorption. Since the shielding effectiveness (SE) is represented in the logarithmic scale and in a coupled way of transmission (SE), absorption (SE), and reflection (SE), often there is a misinterpretation that the EM wave reflectors are regarded as EM wave-absorbing materials. Surprisingly, we found that many materials reported as an EM wave absorber in the literature provide, in fact, less than 50% of EM wave-absorbing capability, i.

View Article and Find Full Text PDF

As a family of smart functional hybrid materials, magnetic polymer composite particles have attracted considerable attention owing to their outstanding magnetism, dispersion stability, and fine biocompatibility. This review covers their magnetorheological properties, namely, flow curve, yield stress, and viscoelastic behavior, along with their synthesis. Preparation methods and characteristics of different types of magnetic composite particles are presented.

View Article and Find Full Text PDF

Magnetorheological (MR) elastomers become one of the most powerful smart and advanced materials that can be tuned reversibly, finely, and quickly in terms of their mechanical and viscoelastic properties by an input magnetic field. They are composite materials in which magnetizable particles are dispersed in solid base elastomers. Their distinctive behaviors are relying on the type and size of dispersed magnetic particles, the type of elastomer matrix, and the type of non-magnetic fillers such as plasticizer, carbon black, and crosslink agent.

View Article and Find Full Text PDF

As highly integrated electronic devices and automotive parts are becoming used in high-power and load-bearing systems, thermal conductivity and mechanical damping properties have become critical factors. In this study, we applied two different fillers of aluminium nitride (AlN) and boron nitride (BN), having polygonal and platelet shapes, respectively, into ethylene-propylene-diene monomer (EPDM) rubber to ensure improved thermo-mechanical properties of EPDM composites. These two different shapes are considered advantageous in providing effective pathways of phonon transfer as well as facilitating sliding movement of packed particles.

View Article and Find Full Text PDF
Article Synopsis
  • An amendment to this paper has been published.
  • You can find the amendment by following the link located at the top of the paper.
  • This updated information may provide important changes or clarifications regarding the original research.
View Article and Find Full Text PDF

Conducting polymer-coated nanoparticles used in electrorheological (ER) and magnetorheological (MR) fluids are reviewed along with their fabrication methods, morphologies, thermal properties, sedimentation stabilities, dielectric properties, and ER and MR characteristics under applied electric or magnetic fields. After functionalization of the conducting polymers, the nanoparticles exhibited properties suitable for use as ER materials, and materials in which magnetic particles are used as a core could also be applied as MR materials. The conducting polymers covered in this study included polyaniline and its derivatives, poly(3,4-ethylenedioxythiophene), poly(3-octylthiophene), polypyrrole, and poly(diphenylamine).

View Article and Find Full Text PDF

Microfibrillated cellulose (MFC) particles were synthesized by a low-pressure alkaline delignification process, and their shape and chemical structure were investigated by SEM and Fourier transformation infrared spectroscopy, respectively. As a novel electrorheological (ER) material, the MFC particulate sample was suspended in insulating oil to fabricate an ER fluid. Its rheological properties-steady shear stress, shear viscosity, yield stress, and dynamic moduli-under electric field strength were characterized by a rotational rheometer.

View Article and Find Full Text PDF

Lignin powder was modified via ring-opening polymerization of caprolactone to form a lignin-polycaprolactone (LPCL) particulate. The LPCL particulates were mixed with an acrylonitrile-butadiene-styrene (ABS) matrix at an extremely high rotational speed of up to 3000 rpm, which was achieved by a closed-loop screw mixer and in-line melt extruder. Using this high-shear extruding mixer, the LPCL particulate size was controlled in the range of 3395 nm (conventional twin-screw extrusion) down to 638 nm (high-shear mixer of 3000 rpm) by altering the mixing speed and time.

View Article and Find Full Text PDF
Article Synopsis
  • Electroadhesive devices use electrostatic forces to lift various materials by inducing opposite charges on objects at their interface.
  • The effectiveness of these devices is influenced by design factors related to interfacial polarization, particularly the length of the electrode boundaries where charges accumulate.
  • A proposed model predicts lifting forces based on applied voltage, impedance, and electrode length, showing that higher impedance also correlates with greater lifting capabilities for materials like paper, glass, and metal.
View Article and Find Full Text PDF

The pristine lignin molecules contain multiple reactive hydroxyl [OH] groups, some of which undergo limited polymerization depending on their configuration (aromatic or aliphatic) or conformation. The key issue in lignin-polymerization is to quantify the number of hydroxyl groups in the pristine molecules for subsequent activation to specific lignin-polymer chain lengths or degree of grafting. In this study, using ε-caprolactone (CL) as a reactive solvent, we successfully polymerized CL on the [OH] sites in the kraft lignin macromonomers (LM, M = 1,520 g mol), which resulted in a thermoplastic lignin-polycaprolactone (PCL) grafted copolymer.

View Article and Find Full Text PDF

Due to the exceptional properties of graphene, numerous possibilities for real applications in various fields have been provided. However, it is a challenge to fabricate bulk graphene materials with properties arising from the nature of individual graphene sheets, and which assemble into monolithic three-dimensional structures. If 3D structured graphene foam were made instead of 2D structured graphene, it is expected that it would be a facile fabrication, with relatively low cost with the possibility of scale-up, and would maintain the intrinsic properties of graphene.

View Article and Find Full Text PDF

Ionic polymer-metal composites (IPMCs) are one of many smart materials and have ionomer bases with a noble metal plated on the surface. The ionomer is usually Nafion, but recently Aquivion has been shown to be a promising alternative. Ionomers are available in the form of precursor pellets.

View Article and Find Full Text PDF

Biomass waste treatment and detrimental dye adsorption are two of the crucial environmental issues nowadays. In this study, we investigate to simultaneously resolve the aforementioned issues by synthesizing chitosan sponges as adsorbents toward rose bengal (RB) dye adsorption. Through a temperature-controlled freeze-casting process, robust and recyclable chitosan sponges are fabricated with hierarchical porosities resulted from the control of concentrations of chitosan solutions.

View Article and Find Full Text PDF

Cellulose particles, their derivatives and composites have special environmentally benign features and are abundant in nature with their various applications. This review paper introduces the essential properties of several types of cellulose and their derivatives obtained from various source materials, and their use in electro-responsive electrorheological (ER) suspensions, which are smart fluid systems that are actively responsive under applied electric fields, while, at zero electric field, ER fluids retain a liquid-like state. Given the actively controllable characteristics of cellulose-based smart ER fluids under an applied electric field regarding their rheological and dielectric properties, they can potentially be applied for various industrial devices including dampers and haptic devices.

View Article and Find Full Text PDF

There have been a number of theoretical and experimental studies on tensile properties of carbon nanotubes (CNT), reporting the Young's modulus of the individual CNT up to 1 TPa. Although CNT shows the promise to be used as reinforcement in a high modulus/strength composite material, it exhibits quite disappointing in terms of modulus or strength. Along with recent advance in CNT growth technique, we will be able to directly measure tensile properties of millimeter-long MWCNTs.

View Article and Find Full Text PDF

As a dry-based electrorheological (ER) material, phosphate microcrystalline cellulose (MCC), which exhibits ER properties under anhydrous conditions, was fabricated by the phosphorylation of MCC particles. The MCC particles were initially synthesized by the three step preparation of an alkali treatment, bleaching, and hydrolysis of cellulose particles from rice husk. The phosphate MCC was then synthesized via the phosphoric ester reaction of urea with phosphoric acid and MCC, and its chemical characteristics were examined by energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy.

View Article and Find Full Text PDF

The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes.

View Article and Find Full Text PDF

Different chemical vapour deposition (CVD) fabrication conditions lead to a wide range of variation in the microstructure and morphologies of carbon nanotubes (CNTs), which actually determine the compressive mechanical properties of CNTs. However, the underlying relationship between the structure/morphology and mechanical properties of CNTs is not fully understood. In this study, we characterized and compared the structural and morphological properties of three kinds of vertically aligned carbon nanotube (VACNT) arrays from different CVD fabrication methods and performed monotonic compressive tests for each VACNT array.

View Article and Find Full Text PDF

Portable energy storage devices have gained special attention due to the growing demand for portable electronics. Herein, an all-solid-state supercapacitor is successfully fabricated based on a poly(vinyl alcohol)-H3PO4 (PVA-H3PO4) polymer electrolyte and a reduced graphene oxide (RGO) membrane electrode prepared by electrophoretic deposition (EPD). The RGO electrode fabricated by EPD contains an in-plane layer-by-layer alignment and a moderate porosity that accommodate the electrolyte ions.

View Article and Find Full Text PDF