Publications by authors named "Jae Cheal Yoo"

Although melanogenesis is a defense mechanism against ultraviolet (UV)-induced skin damage, abnormally excessive melanin production causes pigmentation disorders. Tyrosinase, as a key factor for melanin synthesis, plays an important role in inducing skin pigmentation. Therefore, the inhibition of tyrosinase is crucial in preventing skin pigmentation in the cosmetics and medicine fields.

View Article and Find Full Text PDF

Background/aim: Copine 1 (CPNE1) is a calciumdependent phospholipid protein that has been shown to regulate the AKT serine/threonine kinase 1 (AKT) signaling pathway to mediate its function in various cell types. However, little is known about the physiological function of this protein in breast cancer cells. We aimed to investigate the prognostic and therapeutic value of CPNE1 in erb-b2 receptor tyrosine kinase 2 [human epidermal growth factor receptor 2 (HER2)]-positive and luminal A subtypes of breast cancer.

View Article and Find Full Text PDF

We previously demonstrated that CPNE1 induces neuronal differentiation and identified two binding proteins of CPNE1 (14-3-3γ and Jab1) as potential regulators of CPNE1-mediated neuronal differentiation in hippocampal progenitor cells. To better understand the cellular processes in which CPNE1 participates in neuronal differentiation, we here carried out a yeast two-hybrid screening to find another CPNE1 binding protein. Among the identified proteins, HCLS1-related protein X-1 (HAX1) directly interacts with CPNE1.

View Article and Find Full Text PDF

Irinotecan is a strong anticancer drug whose mechanism of action has been reported only for the inhibition of DNA topoisomerase I (Topo I) through its active metabolite SN-38. In this study, we present a new mechanism of Irinotecan which inhibits the activities of MDM2, an E3 ligase of tumour suppressor p53, and Bcl-xL, an anti-apoptotic protein, through direct binding. In our structure modelling study, Irinotecan could fit to the binding sites of MDM2 and Bcl-xL for their known drugs, Nutlin-3 and ABT-737, with a better binding affinity than to Topo I.

View Article and Find Full Text PDF

Transient receptor-potential, cation channel, subfamily M, member 4 (TRPM4) channels regulate a variety of physiological and pathological processes; however, their roles as functional channels under diverse conditions remain unclear. In this study, cytosolic protein tyrosine phosphatase non-receptor type 6 (PTPN6) interacted with TRPM4 channels. We confirmed their interaction by performing co-immunoprecipitation (Co-IP) assays following heterologous PTPN6 and TRPM4 channel expression in HEK293 cells.

View Article and Find Full Text PDF

Copine1 (CPNE1), has tandem C2 domains and an A domain. We previously demonstrated that CPNE1 directly induces neuronal differentiation via Protein kinase B (AKT) phosphorylation in the hippocampal progenitor cell line, HiB5. To better understand its cellular function, we carried out a yeast two-hybrid screening to find CPNE1 binding partners.

View Article and Find Full Text PDF

The phosphorylation of JNK is known to induce insulin resistance in insulin target tissues. The inhibition of JNK-JIP1 interaction, which interferes JNK phosphorylation, becomes a potential target for drug development of type 2 diabetes. To discover the inhibitors of JNK-JIP1 interaction, we screened out 30 candidates from 4320 compound library with method.

View Article and Find Full Text PDF

Copine 1 (CPNE1) is a well-known phospholipid binding protein in plasma membrane of various cell types. In brain cells, CPNE1 is closely associated with AKT signaling pathway, which is important for neural stem cell (NSC) functions during brain development. Here, we investigated the role of CPNE1 in the regulation of brain NSC functions during brain development and determined its underlying mechanism.

View Article and Find Full Text PDF

Copine1 (CPNE1), known as a calcium-dependent membrane-binding protein, has tandem C2 domains and an A domain. We previously demonstrated that CPNE1 directly induces neuronal differentiation via Protein kinase B (AKT) phosphorylation in the hippocampal progenitor cell line, HiB5. To better understand its cellular function, we carried out a yeast two-hybrid screening to find CPNE1 binding partners.

View Article and Find Full Text PDF

Anoctamin-1 (ANO1) is a Ca(2+)-activated chloride channel (CaCC) that plays important physiological roles in normal and cancerous tissues. However, the plasma membrane trafficking mechanisms of ANO1 remain poorly characterized. In yeast two-hybrid screening experiments, we observed direct interactions of ANO1 with β-COP, which is a subunit of Coat Protein Complex I (COPI).

View Article and Find Full Text PDF

Copine3, a known calcium-dependent membrane binding protein, contains two tandem C2 domains and an A domain. This protein has been shown to interact with receptor tyrosine kinase 2 (ErbB2), but little is known concerning the physiological function of Copine3. To better understand its cellular function, we carried out a yeast two-hybrid screen to find Copine3 binding partners.

View Article and Find Full Text PDF

Copine1 (CPNE1) has tandem C2 domains and an A domain and is known as a calcium-dependent membrane-binding protein that regulates signal transduction and membrane trafficking. We previously demonstrated that CPNE1 directly induces neuronal differentiation via Akt phosphorylation in the hippocampal progenitor cell line, HiB5. To determine which region of CPNE1 is related to HiB5 cell neurite outgrowth, we constructed several mutants.

View Article and Find Full Text PDF

Background: TRPM4 channels are Ca2+-activated nonselective cation channels which are deeply involved in physiological and pathological conditions. However, their trafficking mechanism and binding partners are still elusive.

Results: We have found the 14-3-3γ as a binding partner for TRPM4b using its N-terminal fragment from the yeast-two hybrid screening.

View Article and Find Full Text PDF

Background: Mitochondrial trans-2-enoyl-CoA reductase (MECR) is involved in mitochondrial synthesis of fatty acids and is highly expressed in mitochondria. MECR is also known as nuclear receptor binding factor-1, which was originally reported with yeast two-hybrid screening as a binding protein of the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). However, MECR and PPARα are localized at different compartment, mitochondria, and the nucleus, respectively.

View Article and Find Full Text PDF

Background: The formation of dendrites by melanocytes is highly analogous to that process in neural cells. We previously reported that a C2 domain-containing protein, copine-1, is involved in the extension of dendrites by neural cells. However, the effect of C2 domain-containing proteins in dendrite formation by melanocytes has not yet been elucidated.

View Article and Find Full Text PDF

Cells can resist and even recover from stress induced by acute hypoxia, whereas chronic hypoxia often leads to irreversible damage and eventually death. Although little is known about the response(s) to acute hypoxia in neuronal cells, alterations in ion channel activity could be preferential. This study aimed to elucidate which channel type is involved in the response to acute hypoxia in rat pheochromocytomal (PC12) cells as a neuronal cell model.

View Article and Find Full Text PDF

Copine1 is a ubiquitously expressed protein found in various tissues including the brain, but little is known about the physiological function of this protein. Here, we showed that copine1 is involved in neuronal differentiation. Over-expression of copine1 clearly increased neurite outgrowth and expression of Tuj1, a neuronal marker protein, in HiB5 cells.

View Article and Find Full Text PDF

Clusterin (CLU), a glycoprotein, is involved in apoptosis, producing two alternatively spliced isoforms in various cell types. The pro-apoptotic CLU appears to be a nuclear isoform (nuclear clusterin; nCLU), and the secretory CLU (sCLU) is thought to be anti-apoptotic. The detailed molecular mechanism of nCLU as a pro-apoptotic molecule has not yet been clear.

View Article and Find Full Text PDF

Chitinase 3-like 1 (CHI3L1) is a secreted glycoprotein that has pleiotropic activity in aggressive cancers. In our study, we examined the expression and function of CHI3L1 in glioma cells. CHI3L1 was highly expressed in human glioma tissue, whereas its expression in normal brain tissue was very low.

View Article and Find Full Text PDF

TREK1 belongs to a family of two-pore-domain K(+) (K(2P)) channels and produce background currents that regulate cell excitability. In the present study, we identified a vesicle transport protein, beta-COP, as an interacting partner by yeast two-hybrid screening of a human brain cDNA library with N-terminal region of TREK1 (TREK1-N) as bait. Several in vitro and in vivo binding assays confirmed the protein-protein interaction between TREK1 and beta-COP.

View Article and Find Full Text PDF

A non-steroidal anti-inflammatory drug (NSAID) has many adverse effects including cardiovascular (CV) risk. Diclofenac among the nonselective NSAIDs has the highest CV risk such as congestive heart failure, which resulted commonly from the impaired cardiac pumping due to a disrupted excitation-contraction (E-C) coupling. We investigated the effects of diclofenac on the L-type calcium channels which are essential to the E-C coupling at the level of single ventricular myocytes isolated from neonatal rat heart, using the whole-cell voltage-clamp technique.

View Article and Find Full Text PDF

Transient receptor potential-melastatin 4 (TRPM4) is a Ca(2+)-activated, but Ca(2+)-impermeable, cation channel. Increasing [Ca(2+)](i) induce current activation and reduction through TRPM4 channels. Several TRPM4 isoforms are expressed in mice and humans, but rat TRPM4 (rTRPM4) has not been previously identified.

View Article and Find Full Text PDF

NELL2 is a neuron-specific secreted glycoprotein containing an N-terminal thrombospondin I-like domain (TSP-N). In this study, we describe NELL2-Tsp, a novel alternative splice variant of rat NELL2. NELL2-Tsp uses an alternate stop codon resulting in a C-terminal truncated form of NELL2, containing a signal peptide and a TSP-N domain.

View Article and Find Full Text PDF

Nek2 is a mitotic kinase whose activity varies during the cell cycle. It is well known that Nek2 is involved in centrosome splitting, and a number of studies have indicated that Nek2 is crucial for maintaining the integrity of centrosomal structure and microtubule nucleation activity. In the present study, we report that NIP2, previously identified as centrobin, is a novel substrate of Nek2.

View Article and Find Full Text PDF

The protein tyrosine phosphatase SHP2 is a positive effector of EGFR signaling. To improve our understanding of SHP2's function, we searched for additional binding proteins of SHP2. We found that Annexin II is an SHP2-binding protein.

View Article and Find Full Text PDF