Echinochrome A (EchA), a marine-derived natural product, has shown promise in treating cardiovascular and inflammatory diseases due to its antioxidant and anti-inflammatory properties. However, its cardiac safety remains underexplored. In this study, we utilized human induced pluripotent stem cell-derived cardiac organoids (hCOs) to validate their ability to model the cardiac safety profile of EchA in a human-relevant system.
View Article and Find Full Text PDFHuman embryonic stem cell-derived cardiomyocytes (hESC-CMs) have been reported to exhibit immature embryonic or fetal cardiomyocyte-like phenotypes. To enhance the maturation of hESC-CMs, we identified a natural steroidal alkaloid, tomatidine, as a new substance that stimulates the maturation of hESC-CMs. Treatment of human embryonic stem cells with tomatidine during cardiomyocyte differentiation stimulated the expression of several cardiomyocyte-specific markers and increased the density of T-tubules.
View Article and Find Full Text PDFAims: Cereblon (CRBN) is a substrate receptor of the E3 ubiquitin ligase complex that was reported to target ion channel proteins. L-type voltage-dependent Ca2+ channel (LTCC) density and dysfunction is a critical player in heart failure with reduced ejection fraction (HFrEF). However, the underlying cellular mechanisms by which CRBN regulates LTCC subtype Cav1.
View Article and Find Full Text PDFDiabetic cardiomyopathy (DCM) is a major cause of mortality/morbidity in diabetes mellitus patients. Although tetrahydrobiopterin (BH4) shows therapeutic potential as an endogenous cardiovascular target, its effect on myocardial cells and mitochondria in DCM and the underlying mechanisms remain unknown. Here, we determined the involvement of BH4 deficiency in DCM and the therapeutic potential of BH4 supplementation in a rodent DCM model.
View Article and Find Full Text PDFTo understand the excitation-contraction (E-C) coupling of cardiomyocytes, including the electrophysiological mechanism of their characteristically long action potential duration, is one of the major learning goals in medical physiology. However, the integrative interpretation of the responses occurring during the contraction-relaxation cycle is challenging due to the dynamic interaction of underlying factors. Starting in 2017, we adopted the mathematical computer simulation model of human ventricular myocyte (Cardiac E-C_Sim), hypothesizing that this educational technology may facilitate students' learning of cardiac physiology.
View Article and Find Full Text PDFDiabetes mellitus is associated with cardiovascular, ophthalmic, and renal comorbidities. Among these, diabetic cardiomyopathy (DCM) causes the most severe symptoms and is considered to be a major health problem worldwide. Exercise is widely known as an effective strategy for the prevention and treatment of many chronic diseases.
View Article and Find Full Text PDFPathogenic variants in the human SCN5A gene encoding the a-subunit of the principle Na channel (Nav1.5) are associated with long QT syndrome (LQTS) 3. LQT3 patients display variable responses to Na channel blockers demanding for the development of variant-specific therapeutic strategies.
View Article and Find Full Text PDFPacemaker depolarization in interstitial cells of Cajal (ICCs) is believed to be induced by Ca transients and activation of anoctamin-1 (Ano1) channels in the plasma membrane. However, block of store-operated calcium entry (SOCE) or the Na-K-2Cl cotransporter (NKCC1) terminates pacemaker activity in ICC, indicating these transporters are involved in the initiation or maintenance of pacemaker activity. We hypothesized that SOCE contributes to pacemaker depolarization by maintaining [Ca] in the endoplasmic reticulum, which is the underlying source of Ca transients for activation of Ano1.
View Article and Find Full Text PDFIsolating actively proliferating cardioblasts is the first crucial step for cardiac regeneration through cell implantation. However, the origin and identity of putative cardioblasts are still unclear. Here, we uncover a novel class of cardiac lineage cells, PDGFRαFlk1 cardioblasts (PCBs), from mouse and human pluripotent stem cells induced using CsAYTE, a combination of the small molecules Cyclosporin A, the rho-associated coiled-coil kinase inhibitor Y27632, the antioxidant Trolox, and the ALK5 inhibitor EW7197.
View Article and Find Full Text PDFFatty acid (FA)-dependent oxidation is the predominant process for energy supply in normal heart. Impaired FA metabolism and metabolic insufficiency underlie the failing of the myocardium. So far, FA metabolism in normal cardiac physiology and heart failure remains undetermined.
View Article and Find Full Text PDFEmbryonic stem cell-derived cardiomyocytes (ESC-CMs) hold great interest in many fields of research including clinical applications such as stem cell and gene therapy for cardiac repair or regeneration. ESC-CMs are also used as a platform tool for pharmacological tests or for investigations of cardiac remodeling. ESC-CMs have many different aspects of morphology, electrophysiology, calcium handling, and bioenergetics compared with adult cardiomyocytes.
View Article and Find Full Text PDFNa(+)/Ca(2+) exchanger current (INCX) triggered by spontaneous Ca(2+) release from sarcoplasmic reticulum (SR) has been suggested as one of the cardiac pacemaker mechanisms ("Ca(2+) clock model"). In human embryonic stem cell-derived cardiomyocytes (hESC-CMs) showing spontaneous action potentials (APs), we found that substantial population (35 %) showed regular oscillation of inward currents (SICs) in nystatin-perforated voltage clamp between -40 and 40 mV (-80 ± 10.6 pA, at -20 mV).
View Article and Find Full Text PDFNeuronal nitric oxide synthase (nNOS) is important in cardiac protection in diseased heart. Recently, we have reported that nNOS is associated with myofilament Ca(2+) desensitization in cardiac myocytes from hypertensive rats. So far, the effect of myofilament Ca(2+) desensitization or nNOS on L-type Ca(2+) channel activity (I(Ca)) in cardiac myocyte is unclear.
View Article and Find Full Text PDFEchinochrome A (Ech A), a marine bio-product isolated from sea urchin eggs, is known to have cardioprotective effects through its strong antioxidant and ATP-sparing capabilities. However, the effects of Ech A on cardiac excitation-contraction (E-C) are not known. In this study, we investigated the effects of Ech A on cardiac contractility and Ca(2+) handling in the rat heart.
View Article and Find Full Text PDFProg Biophys Mol Biol
September 2014
It is widely accepted that interstitial cells of Cajal (ICCs) generate pacemaker potentials to propagate slow waves along the whole gastrointestinal tract. Previously, we constructed a biophysically based model of ICCs in mouse small intestine to explain the pacemaker mechanism. Our previous model, however, could not explain non-uniformity of pacemaker potentials and random occurrence of unitary potentials, thus we updated our model.
View Article and Find Full Text PDFProg Biophys Mol Biol
September 2014
Genetic factors play an important role in the pathogenesis of atrial flutter (AF). Although mutation in KCNQ1 has been widely correlated with AF, the mechanism by which mutation promotes AF remains poorly understood. The purpose of this study was to investigate the proarrhythmic effect of V241F KCNQ1 mutation in human atrium using the electrophysiological model of human atrium.
View Article and Find Full Text PDFDiabetes mellitus and hypertension are common diseases frequently coexisting. Although augmentation of L-type Ca(2+) channel (ICaL) activity has been reported in vascular smooth muscle cells (VSMCs) of a spontaneously hypertensive rat model, no study on ICaL has been conducted for coexisting hypertension and diabetes. Sprague Dawley rats were assigned to four groups: a sham-operated control group (CG), a unilateral nephrectomy group (UNG), a streptozotocin (STZ)-induced type 1 diabetic group (SDG) and a coexisting hypertension and diabetes group (DHG), which underwent nephrectomy and received STZ injection.
View Article and Find Full Text PDFBackground: Cardiomyocytes that differentiate from pluripotent stem cells (PSCs) provide a crucial cellular resource for cardiac regeneration. The mechanisms of mitochondrial metabolic and redox regulation for efficient cardiomyocyte differentiation are, however, still poorly understood. Here, we show that inhibition of the mitochondrial permeability transition pore (mPTP) by Cyclosporin A (CsA) promotes cardiomyocyte differentiation from PSCs.
View Article and Find Full Text PDF