Effects of equimolar concentrations of proinsulin C-peptide and insulin on glucose synthesis were studied in primary cultures of rabbit kidney-cortex tubules grown in the presence of alanine, glycerol, and octanoate. The rhodamine-labeled C-peptide entered renal tubular cells and localized in nuclei, both in the presence and absence of insulin; preincubations with the unlabeled compound inhibited internalization. C-peptide did not affect glucose formation when added alone but potentiated the inhibitory action of insulin by about 20% due to a decrease in flux through glucose-6-phosphate isomerase (GPI) and (or) glucose-6-phosphatase (G6Pase).
View Article and Find Full Text PDFThe mechanism of the biological clock is based on a rhythmic expression of clock genes and clock-controlled genes. As a result of their transcripto-translational associations, endogenous rhythms in the synthesis of key proteins of various physiological and metabolic processes are created. The major timekeeping mechanism for these rhythms exists in the central nervous system.
View Article and Find Full Text PDFProinsulin C-peptide, released in equimolar amounts with insulin by pancreatic β cells, since its discovery in 1967 has been thought to be devoid of biological functions apart from correct insulin processing and formation of disulfide bonds between A and B chains. However, in the last two decades research has brought a substantial amount of data indicating a crucial role of C-peptide in regulating various processes in different types of cells and organs. C-peptide acts presumably via either G-protein-coupled receptor or directly inside the cell, after being internalized.
View Article and Find Full Text PDFAntidiabetic action of inorganic selenium compounds is commonly accepted. Since in diet selenium mainly exists as selenoamino acids, potential hypoglycemic properties of methylselenocysteine (MSC) were investigated in four groups of rabbits: untreated and MSC-treated control animals as well as alloxan-diabetic and MSC-treated diabetic rabbits. MSC (at a dose of 1mg/kg body weight) was administered daily for 3 weeks via intraperitoneal injection.
View Article and Find Full Text PDFThe therapeutic potential of taurine was investigated under diabetic conditions. Alloxan diabetic rabbits were treated daily for three weeks with 1% taurine in drinking water. The following parameters were measured: 1) serum glucose, urea, creatinine and hydroxyl free radical (HFR) levels; 2) blood glutathione redox state; 3) urine albumin concentration; 4) hepatic and renal HFR levels, GSH/GSSG ratios and the activities of catalase, superoxide dismutase and the enzymes of glutathione metabolism; 5) renal NADPH oxidase activity; 6) the rates of renal and hepatic gluconeogenesis.
View Article and Find Full Text PDFThe action of gatifloxacin, the broad-spectrum fluoroquinolone antibiotic commonly used in the therapy of various bacterial infections, was investigated in isolated rabbit hepatocytes and kidney-cortex tubules by measuring the activity of gluconeogenesis, a process that maintains whole body glucose homeostasis. The data show that in kidney-cortex tubules, application of gatifloxacin at up to 100 microM was followed by a marked accumulation of the drug in the intracellular milieu and a decrease in the rate of glucose formation from pyruvate by 20-50%. Gatifloxacin did not affect the rate of gluconeogenesis from either alanine + glycerol + octanoate or aspartate + glycerol + octanoate.
View Article and Find Full Text PDFThe therapeutic potential of lipoic acid (LA) in diabetes and diabetic nephropathy treatment was elucidated. Alloxan diabetic rabbits were treated daily for three weeks with either 10 or 50 mg of LA per kg body weight (i.p.
View Article and Find Full Text PDFThe action of selegiline, a selective and irreversible inhibitor of monoamine oxidase B, commonly applied in the therapy of Parkinson's disease, on glucose formation was investigated in isolated rabbit hepatocytes and kidney-cortex tubules, maintaining the whole body glucose homeostasis via gluconeogenic pathway activity. An intensive hepatic metabolism of selegiline resulted in formation of selegiline-N-oxide, desmethylselegiline, methamphetamine and amphetamine, whereas during slow degradation of the drug in freshly isolated renal tubules selegiline-N-oxide was mainly produced. At 100 microM concentration selegiline markedly diminished glucose synthesis in isolated renal tubules incubated with dihydroxyacetone or alanine+glycerol+octanoate (by about 60 and 30%, respectively), while at 5 microM concentration a similar degree of inhibition was achieved in renal tubules grown in primary culture under the same conditions (about 40 and 60%, respectively).
View Article and Find Full Text PDFNiacin (nicotinic acid and nicotinamide) is a vitamin used as a source of the NAD+ and NADP+ coenzymes required for many metabolic processes. Its low dietary levels induce the development of pellagra. Niacin has been used for decades in the treatment of patients with disturbed lipid and lipoprotein metabolism, this being the main cause of atherosclerotic changes in cardiovascular diseases.
View Article and Find Full Text PDFThe antioxidative effects of melatonin (Mel), 5-hydroxytryptophan (5-HTP) and taurine (TAU) on hyperglycemia-induced oxidative stress was investigated in primary cultures of kidney-cortex tubule cells grown in metabolically and hormonally defined medium. In the presence of 30 mm glucose (hyperglycemic conditions), cell viability was decreased by about 35% in comparison with that estimated in the glucose-depleted medium probably as a result of induction of apoptosis, as concluded from: (i) chromatin condensation and DNA fragmentation assays, (ii) a significant enhancement of reactive oxygen species (ROS) production, (iii) 8-hydroxydeoxyguanosine (8-OHdG) generation, (iv) an increased protein peroxidation and (v) a decline of reduced glutathione (GSH) levels leading to a disturbed glutathione redox state. The addition of 100 microm Mel to the hyperglycemic medium resulted in a twofold decrease in both 8-OHdG accumulation and protein peroxidation as well as restoration of the control intracellular ROS levels accompanied by a substantial increase in GSH/oxidized glutathione (GSSG) ratio due to a decline in GSSG content.
View Article and Find Full Text PDFAlthough selenium is taken with diet mainly as selenoamino acids, its hypoglycaemic action on hepatic gluconeogenesis has been studied with the use of inorganic selenium derivatives. The aim of the present investigation was to compare relative efficacies of inorganic and organic selenium compounds in reducing glucose synthesis in hepatocytes and renal tubules, significantly contributing to the glucose homeostasis. In contrast to hepatocytes, both selenite and methylselenocysteine inhibited renal gluconeogenesis by about 40-45% in control rabbits.
View Article and Find Full Text PDFSuramin is the drug of choice for the treatment of African trypanosomiasis and onchocerciasis. It is also tested for its potential use as an anticancer agent and chemosensitizer. As suramin has been reported to induce hyperglycaemia, its effect on glucose formation has been studied in isolated rabbit hepatocytes and kidney-cortex tubules.
View Article and Find Full Text PDFOxidative stress is considered to be the main cause of diabetic complications. As the role of antioxidants in diabetes therapy is still underestimated, the aim of the present investigation was to study the antioxidative action of melatonin in comparison with N-acetylcysteine (NAC) under diabetic conditions. Alloxan-diabetic rabbits were treated daily with either melatonin (1 mg/kg, i.
View Article and Find Full Text PDFDopamine is an important endogenous catecholamine which exerts widespread effects both in neuronal (as a neurotransmitter) and non-neuronal tissues (as an autocrine or paracrine agent). Within the central nervous system, dopamine binds to specific membrane receptors presented by neurons and it plays the key role in the control of locomotion, learning, working memory, cognition, and emotion. The brain dopamine system is involved in various neurological and psychiatric disturbances such as Parkinson's Disease, schizophrenia, and amphetamine and cocaine addiction.
View Article and Find Full Text PDFThe circulating L-3,4-dihydroxyphenylalanine, the drug of choice in the therapy of Parkinson's disease (PD), is efficiently extracted by kidney and converted to dopamine, known to control several renal functions. As: (i) in addition to liver, kidney is an important source of glucose in mammals and (ii) the action of this drug on renal gluconeogenesis has not yet been studied, the aim of the present investigation was to estimate the influence of L-3,4-dihydroxyphenylalanine metabolism on glucose formation in isolated kidney-cortex tubules incubated with various gluconeogenic substrates. The data indicate that a rapid intracellular degradation of L-3,4-dihydroxyphenylalanine and tyramine (at 100 and 200 microM concentrations) is accompanied by 25-40% decrease in glucose production from pyruvate, alanine + glycerol + octanoate and dihydroxyacetone due to augmented generation of hydrogen peroxide via monoamine oxidase B, resulting in a decline of glutathione redox state by 40%.
View Article and Find Full Text PDFThe effect of melatonin on glucose metabolism in the presence and absence of insulin has been investigated in the primary cultures of renal tubules grown in a defined medium. In the absence of glucose in the medium containing 5 microg/mL of insulin and 2 mm alanine + 5 mm glycerol + 0.5 mm octanoate, 100 nm melatonin stimulated both glucose and lactate synthesis, while in the medium devoid of insulin melatonin action was negligible.
View Article and Find Full Text PDFEffects of various cAMP analogues on gluconeogenesis in isolated rabbit kidney tubules have been investigated. In contrast to N(6),2'-O-dibutyryladenosine-3',5'-cyclic monophosphate (db-cAMP) and cAMP, which accelerate renal gluconeogenesis, 8-bromoadenosine-3',5'-cyclic monophosphate (Br-cAMP) and 8-(4-chlorophenylthio)-cAMP (pCPT-cAMP) inhibit glucose production. Stimulatory action of cAMP and db-cAMP may be evoked by butyrate and purinergic agonists generated during their extracellular and intracellular metabolism resulting in an increase in flux through fructose-1,6-bisphosphatase and in consequence acceleration of the rate of glucose formation.
View Article and Find Full Text PDFAims: The effect of ethanol on glucose synthesis in kidney-cortex tubules of control and diabetic rabbits has been investigated.
Methods: Both freshly isolated and grown in primary cultures, kidney-cortex tubules were incubated with alanine or aspartate plus lactate or glycerol plus octanoate in the absence and presence of 100 mmol/l ethanol.
Results: In freshly isolated renal tubules incubated in the presence of alanine plus lactate or glycerol plus octanoate, and in tubules grown in primary culture in the medium containing alanine plus lactate plus octanoate alcohol, resulted in about 30% decrease in glucose formation.
The intracellular glutathione redox state and the rate of glucose formation were studied in rabbit kidney-cortex tubules. In the presence of substrates effectively utilized for glucose formation, ie, aspartate + glycerol + octanoate, alanine + glycerol + octanoate, malate, or pyruvate, the intracellular reduced glutathione/oxidized glutathione (GSH/GSSG) ratios were significantly higher than those under conditions of negligible glucose production. Changes in the intracellular GSH/GSSG ratio corresponded to those in glucose-6-phosphate content and reduced nicotinamide adenine dinucleotide phosphate/oxidized nicotinamide adenine dinucleotide phosphate (NADPH/NADP(+)) ratio obtained from malate/pyruvate measurements.
View Article and Find Full Text PDFThe effects of extracellular purinergic agonists and their breakdown products on glucose and glutamine synthesis in rabbit kidney-cortex tubules incubated with aspartate + glycerol or alanine + glycerol + octanoate were investigated. A rapid extracellular degradation of ATP was accompanied by an accumulation of AMP, inosine, and hypoxanthine. Extracellular ATP and its breakdown products accelerated glucose synthesis in renal tubules, while ammonium released from adenine-containing compounds enhanced glutamine synthesis and diminished the degree of gluconeogenesis stimulation.
View Article and Find Full Text PDFEffect of vanadyl acetylacetonate (VAc) and metformin on gluconeogenesis has been studied in isolated hepatocytes and kidney-cortex tubules of rabbit. Glucose formation from alanine+glycerol+octanoate, pyruvate or dihydroxyacetone was inhibited by 50-80% by 100 microM VAc or 500 microM metformin in renal tubules of control and alloxan-diabetic animals, while the inhibitory action of these compounds in hepatocytes was less pronounced (by about 20-30%). In contrast to VAc, metformin increased the rate of lactate formation by about 2-fold in renal tubules incubated with alanine+glycerol+octanoate.
View Article and Find Full Text PDF