Publications by authors named "Jadra Mosa"

Graphene and its derivatives have been widely used to develop novel materials with applications in energy storage. Among them, reduced graphene oxide has shown great potential for more efficient storage of Na ions and is a current target in the design of electrodes for environmentally friendly Na ion batteries. The search for more sustainable and versatile manufacturing processes also motivates research into additive manufacturing electrodes.

View Article and Find Full Text PDF

Due to the abundance and low cost of exchanged metal, sodium-ion batteries have attracted increasing research attention for the massive energy storage associated with renewable energy sources. Nickel oxide (NiO) thin films have been prepared by magnetron sputtering (MS) deposition under an oblique angle configuration (OAD) and used as electrodes for Na-ion batteries. A systematic chemical, structural and electrochemical analysis of this electrode has been carried out.

View Article and Find Full Text PDF

The development of anodes based on LiTiO (LTO) for lithium ion batteries has become very important in recent years on the basis that it allows a long service life (stability in charge-discharge cycling) and safety improvements. The processing of this material in the form of thin film allows for greater control of its characteristics and an improvement of its disadvantages, namely reduced electrical conductivity and low diffusion of lithium ions. In this work, we try to limit these disadvantages through the synthesis of a mesostructured carbon-doped LiTiO thin-film with a pure spinel phase using a combination of a block-copolymer template and in situ synthesis of Li-Ti double alkoxide.

View Article and Find Full Text PDF
Article Synopsis
  • Organic/inorganic hybrid membranes were developed using a combination of GTT (GPTMS-TMES-TPTE) precursors through organic polymerization and sol-gel synthesis for Li-ion battery applications.
  • These self-supported materials and thin-film solid hybrid electrolytes were doped with LiTFSI and exhibited highly cross-linked structures that resulted in high ionic conductivity.
  • The study explored how the crosslinked hybrid structure and polymerization grade influenced ionic conductivity, achieving maximum values of 1.3 × 10⁻⁶ S/cm at room temperature and 1.4 × 10⁻⁵ S/cm at 60 °C, with a wide electrochemical stability window of 1.5-5 V ideal
View Article and Find Full Text PDF

Transparent oxyfluoride glass-ceramic films and self-supported layers with composition 80SiO₂-20LaF₃ doped with Er have been successfully synthesized by sol-gel process for the first time. Crack-free films and self-supported layer with a maximum thickness up to 1.4 µm were obtained after heat treatment at the low temperature of 550 °C for 1 min, resulting in a LaF₃ crystal fraction of 18 wt%, as confirmed by quantitative Rietveld refinement.

View Article and Find Full Text PDF

Magnesium alloys, with a density two-thirds that of aluminum, are very attractive for the industry. However, these alloys are extremely susceptible to corrosion in the presence of aggressive electrolytes such as NaCl solutions. Here, we designed hybrid coatings obtained by the consolidation of organically modified polysilsesquioxanes called "melting gels" for the corrosion protection of AZ31 magnesium alloy in NaCl solutions.

View Article and Find Full Text PDF

Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative.

View Article and Find Full Text PDF

This study is focused on structural characterization of hybrid glasses obtained by consolidation of melting gels. The melting gels were prepared in molar ratios of methyltriethoxysilane (MTES) and dimethyldiethoxysilane (DMDES) of 75%MTES-25%DMDES and 65%MTES-35%DMDES. Following consolidation, the hybrid glasses were characterized using Raman, Si and C Nuclear Magnetic Resonance (NMR) spectroscopies, synchrotron Small Angle X-Ray Scattering (SAXS) and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

(1)H NMR spectroscopy at 400 MHz in toluene-d8 of evaporated mixtures of lithium ethoxide and titanium(iv) isopropoxide in ethanol, used to prepare the spinel Li4Ti5O12 by the sol-gel method, may help clarify why the atomic ratio 5Li : 5Ti and not 4Li : 5Ti is the right choice to obtain the pure phase when performing hydrolysis at room temperature. The mixtures xLiOEt/yTi(OPr(i))4 in ethanol undergo alcohol exchange at room temperature, and the evaporated residues contain double lithium-titanium ethoxide [LiTi3(OEt)13] rather than simple mixtures of single metal alkoxides; this is of great relevance to truly understanding the chemistry and structural changes in the sol-gel process. Detailed inspection of the (1)H and (13)C VT NMR spectra of mixtures with different Li/Ti atomic ratios unequivocally shows the formation of [LiTi3(OEt)13] in a solution at low temperature.

View Article and Find Full Text PDF

Nanoporous barium titanate and lead titanate thin films (∼100 nm calculated from ellipsometric data) are prepared starting from sol-gel solutions modified with a commercially available block-copolymer and evaporation-induced self-assembly methodology. The tuning of the thermal treatment followed by in situ ellipsometry allows the decomposition of the organic components and of the structuring agent leading to the formation of porous tetragonal crystalline perovskite structures as observed by XRD, HRTEM, SEM, and ellipsoporosimetry. Both nanoporous barium titanate and lead titanate thin films present local piezoelectric and ferroelectric behavior measured by piezoresponse force microscopy (PFM), being promising platforms for the preparation of the generation of new multifunctional systems.

View Article and Find Full Text PDF