Hematol Transfus Cell Ther
December 2021
Introduction: Oncohematological patients require the evaluation for possible infiltration of the central nervous system (CNS) by neoplastic cells at diagnosis and/or during the monitoring of the chemotherapeutic treatment. Morphological analysis using conventional microscopy is considered the method of choice to evaluate the cerebrospinal fluid (CSF) samples, despite technical limitations.
Objective: This study aimed to compare the performance of the cytomorphology and flow cytometric immunophenotyping (FC) in the detection of CNS infiltration.
Landauer's bound relates changes in the entropy of a system with the inevitable dissipation of heat to the environment. The bound, however, becomes trivial in the limit of zero temperature. Here we show that it is possible to derive a tighter bound which remains nontrivial even as T→0.
View Article and Find Full Text PDFWe introduce a general framework for thermometry based on collisional models, where ancillas probe the temperature of the environment through an intermediary system. This allows for the generation of correlated ancillas even if they are initially independent. Using tools from parameter estimation theory, we show through a minimal qubit model that individual ancillas can already outperform the thermal Cramer-Rao bound.
View Article and Find Full Text PDFThe characterization of irreversibility in general quantum processes is an open problem of increasing technological relevance. Yet, the tools currently available to this aim are mostly limited to the assessment of dynamics induced by equilibrium environments, a situation that often does not match the reality of experiments at the microscopic and mesoscopic scale. We propose a theory of irreversible entropy production that is suited for quantum systems exposed to general, nonequilibrium reservoirs.
View Article and Find Full Text PDFQuantum master equations form an important tool in the description of transport problems in open quantum systems. However, they suffer from the difficulty that the shape of the Lindblad dissipator depends sensibly on the system Hamiltonian. Consequently, most of the work done in this field has focused on phenomenological dissipators which act locally on different parts of the system.
View Article and Find Full Text PDF