Publications by authors named "Jaden Lee"

and are fastidious oral pathogens and etiological agents associated with chronic periodontitis. Although previous studies showed increased levels of the two obligate anaerobic species in periodontitis patients, methodologies for this knowledge were primarily limited to sampling subgingival plaque, saliva, or gingival crevicular fluid. To evaluate the extent to which and may invade the periodontal tissues, an cross-sectional study was comparatively conducted on the gingival biopsy specimens of patients diagnosed with periodontal health or chronic periodontitis.

View Article and Find Full Text PDF

Cell surface nucleotide-metabolizing enzyme, ectonucleotidase-CD73, has emerged as a central component of the cellular homeostatic-machinery that counterbalances the danger-molecule (extracellular-ATP)-driven proinflammatory response in immune cells. While the importance of CD73 in microbial host fitness and symbiosis is gradually being unraveled, there remains a significant gap in knowledge of CD73 and its putative role in epithelial cells. Here, we depict a novel host-pathogen adaptation mechanism where CD73 takes a center role in the intracellular persistence of , a major colonizer of oral mucosa, using human primary gingival epithelial cell (GEC) system.

View Article and Find Full Text PDF

Ectonucleotidases CD39 and CD73, specific nucleotide metabolizing enzymes located on the surface of the host, can convert a pro-inflammatory environment driven by a danger molecule extracellular-ATP to an adenosine-mediated anti-inflammatory milieu. Accordingly, CD39/CD73 signaling have has strongly implicated in modulating the intensity, duration, and composition of purinergic danger signals delivered to host. Recent studies have eluted potential roles for CD39 and CD73 in selective triggering of a variety of host immune cells and molecules in the presence of pathogenic microorganisms or microbial virulence molecules.

View Article and Find Full Text PDF

Purpose: With the significance of stable adhesion of alveolar bone and peri-implant soft tissue on the surface of titanium for successful dental implantation procedure, the purpose of this study was to apply microgrooves on the titanium surface and investigate their effects on peri-implant cells and tissues.

Methods: Three types of commercially pure titanium discs were prepared; machined-surface discs (A), sandblasted, large-grit, acid-etched (SLA)-treated discs (B), SLA and microgroove-formed discs (C). After surface topography of the discs was examined by confocal laser scanning electron microscopy, water contact angle and surface energy were measured.

View Article and Find Full Text PDF