Publications by authors named "Jade McDaniel"

Dihydrofolate reductase (DHFR), due to its universality and the depth with which it has been studied, is a model system in the study of protein dynamics. Myriad previous works have identified networks of residues in positions near to and remote from the active site that are involved in the dynamics. For example, specific mutations on the Met20 loop in DHFR (N23PP/S148A) are known to disrupt millisecond-time scale motions as well as reduce catalytic activity.

View Article and Find Full Text PDF

Ferroptosis is a recently discovered cell death mechanism triggered by iron-dependent elevation of reactive oxygen species leading to lipid membrane peroxidation. We previously reported the development of a new class of ferroptosis inducers referred to as CETZOLEs with CC values in the low micromolar range. Structure-activity relationship study of these compounds led to the development of more potent analogs with CC values in the nanomolar range.

View Article and Find Full Text PDF

The role of dynamics in enzymatic function is a highly debated topic. Dihydrofolate reductase (DHFR), due to its universality and the depth with which it has been studied, is a model system in this debate. Myriad previous works have identified networks of residues in positions near to and remote from the active site that are involved in dynamics and others that are important for catalysis.

View Article and Find Full Text PDF

Ferroptosis is a form of iron-dependent cell death characterized by elevated lipid peroxides and reactive oxygen species (ROS). Glutathione (GSH) plays an essential role in scavenging ROS to maintain cell viability and acts as a cofactor of GSH peroxidase 4 (GPX4) that protects lipids from oxidation. We have previously described a novel class of small molecules that induce ferroptosis in certain types of cancer cells.

View Article and Find Full Text PDF

The use of the unprecedented annulating reagents methyl -(-butylsulfinyl)-4-chlorobutanimidate and methyl -(-butylsulfinyl)-5-bromopentanimidate enables the diastereoselective preparation of 5- and 6-membered carbocycles bearing three contiguous stereocenters. These synthons undergo cycloaddition with a variety of Michael acceptors to form cyclopentane/cyclohexane rings with excellent stereochemical control, generating only one of the eight possible diastereomers. This novel methodology has enabled the highly enantioselective and high yielding synthesis of novel chemotypes of pharmacological relevance.

View Article and Find Full Text PDF

The potential application of mRNA for the identification of biological fluids using molecular techniques has been a recent development in forensic serology. Constitutively expressed housekeeping genes can assess the amount of mRNA recovered from a sample, establish its suitability for downstream applications, and provide a reference point to corroborate the identity of the fluid. qPCR was utilized to compare the expression levels of housekeeping genes from forensic-like body fluid stains to establish the most appropriate assessment of human mRNA quantity prior to profiling.

View Article and Find Full Text PDF