Low back pain poses a significant societal burden, with progressive intervertebral disc degeneration (IDD) emerging as a pivotal contributor to chronic pain. Improved animal models of progressive IDD are needed to comprehensively investigate new diagnostic and therapeutic approaches to managing IDD. Recent studies underscore the immune system's involvement in IDD, particularly with regards to the role of immune privileged tissues such as the nucleus pulposus (NP) becoming an immune targeting following initial disc injury.
View Article and Find Full Text PDFOsteosarcoma (OS) is a heterogeneous, aggressive malignancy of the bone that disproportionally affects children and adolescents. Therapeutic interventions for OS are limited, which is in part due to the complex tumor microenvironment (TME). As such, we used single-cell RNA sequencing (scRNA-seq) to describe the cellular and molecular composition of the TME in 6 treatment-naïve dogs with spontaneously occurring primary OS.
View Article and Find Full Text PDFThe use of large animal spontaneous models of solid cancers, such as dogs with osteosarcoma (OS), can help develop new cancer immunotherapy approaches, including chimeric antigen receptor (CAR) T cells. The goal of the present study was to generate canine CAR T cells targeting the B7-H3 (CD276) co-stimulatory molecule overexpressed by several solid cancers, including OS in both humans and dogs, and to assess their ability to recognize B7-H3 expressed by canine OS cell lines or by canine tumors in xenograft models. A second objective was to determine whether a novel dual CAR that expressed a chemokine receptor together with the B7-H3 CAR improved the activity of the canine CAR T cells.
View Article and Find Full Text PDFObjective: To investigate mechanistically the reported beneficial effects of immune-activated mesenchymal stromal cell (MSC) therapy to treat equine septic arthritis, leveraging Nanostring technology.
Animals: 8 Quarter Horses with induced tibiotarsal Staphylococcus aureus septic arthritis treated IA with either Toll-like receptor-3 agonist polyinosinic:polycytidylic acid-activated MSCs + vancomycin antimicrobials (TLR-MSC-VAN; n = 4) or antimicrobials (VAN; 4).
Methods: Synovial tissues were collected and fixed in neutral-buffered 10% formalin, and formalin-fixed paraffin-embedded synovial and osteochondral tissues were sequenced using a custom-designed 200-gene equine Nanostring nCounter immune panel to directly quantify expression of key immune and cartilage-related genes.
Osteosarcoma (OS) is a heterogeneous, aggressive malignancy of the bone that disproportionally affects children and adolescents. Therapeutic interventions for OS are limited, which is in part due to the complex tumor microenvironment (TME) that has proven to be refractory to immunotherapies. Thus, there is a need to better define the complexity of the OS TME.
View Article and Find Full Text PDFTranslationally relevant animal models are essential for the successful translation of basic science findings into clinical medicine. While rodent models are widely accessible, there are numerous limitations that prevent the extrapolation of findings to human medicine. One approach to overcome these limitations is to use animal models that are genetically diverse and naturally develop disease.
View Article and Find Full Text PDFGiven the rapid potential spread of agricultural pathogens, and the lack of vaccines for many, there is an important unmet need for strategies to induce rapid and non-specific immunity against these viral and bacterial threats. One approach to the problem is to generate non-specific immune responses at mucosal surfaces to rapidly protect from entry and replication of both viral and bacterial pathogens. Using complexes of charged nanoparticle liposomes with both antiviral and antibacterial toll-like receptor (TLR) nucleic acid ligands (termed liposome-TLR complexes or ), we have previously demonstrated considerable induction of innate immune responses in nasal and oropharyngeal tissues and protection from viral and bacterial pathogens in mixed challenge studies in rodents, cattle, and companion animals.
View Article and Find Full Text PDFPurpose: Malignant gliomas have a highly immune suppressive tumor microenvironment (TME) which renders them largely unresponsive to conventional therapeutics. Therefore, the present study evaluated a therapeutic protocol designed overcome the immune barrier by combining myeloid cell targeted immunotherapy with tumor vaccination.
Experimental Design: We utilized a spontaneously occurring canine glioma model to investigate an oral TME modifying immunotherapy in conjunction with cancer stem cell (CSC) vaccination.
Osteoarthritis (OA) is a leading cause of morbidity among aging populations, yet symptom and/or disease-modification remains elusive. Adipose-derived mesenchymal stromal cells (adMSCs) have demonstrated immunomodulatory and anti-inflammatory properties that may alleviate clinical signs and interrupt disease onset and progression. Indeed, multiple manuscripts have evaluated intra-articular administration of adMSCs as a therapeutic; however, comparatively few evaluations of systemic delivery methods have been published.
View Article and Find Full Text PDFPurpose: There is increasing recognition that progress in immuno-oncology could be accelerated by evaluating immune-based therapies in dogs with spontaneous cancers. Osteosarcoma (OS) is one tumor for which limited clinical benefit has been observed with the use of immune checkpoint inhibitors. We previously reported the angiotensin receptor blocker losartan suppressed metastasis in preclinical mouse models through blockade of CCL2-CCR2 monocyte recruitment.
View Article and Find Full Text PDFBackground: Non-specific immunotherapeutics have been evaluated previously in dogs, primarily for cancer treatment. However, there remains a need for a more broadly targeted, general purpose immunotherapeutic capable of activating innate immune defenses for non-specific protection or early treatment of viral and bacterial infections. To address need, our group has developed a liposomal immune stimulant (liposome-TLR complexes, LTC) containing TLR 3 and 9 agonists specifically designed to activate mucosal immune defenses in sites such as nasal cavity and oropharynx, following topical delivery.
View Article and Find Full Text PDFInflammatory monocytes have been shown to play key roles in cancer metastasis through promotion of tumor cell extravasation, growth, and angiogenesis. Monocyte recruitment to metastases is mediated primarily via the CCL2-CCR2 chemotactic axis. Thus, disruption of this axis represents an attractive therapeutic target for the treatment of metastatic disease.
View Article and Find Full Text PDFChronic bacterial infections associated with biofilm formation are often difficult to resolve without extended courses of antibiotic therapy. Mesenchymal stem cells (MSC) exert antibacterial activity in vitro and in acute bacterial infection models, but their activity in chronic infection with biofilm models has not been previously investigated. Therefore, we studied the effects of MSC administration in mouse and dog models of chronic infections associated with biofilms.
View Article and Find Full Text PDFMesenchymal stem cells (MSC) represent a readily accessible source of cells with potent immune modulatory activity. MSC can suppress ongoing inflammatory responses by suppressing T cell function, while fewer studies have examined the impact of MSC on dendritic cell (DC) function. The dog spontaneous disease model represents an important animal model with which to evaluate the safety and effectiveness of cellular therapy with MSC.
View Article and Find Full Text PDFCytokines are key regulators of adequate immune responses to infection with Mycobacterium tuberculosis. We demonstrate that the p110δ catalytic subunit of PI3K acts as a downstream effector of the TLR family member RP105 (CD180) in promoting mycobacteria-induced cytokine production by macrophages. Our data show that the significantly reduced release of TNF and IL-6 by RP105(-/-) macrophages during mycobacterial infection was not accompanied by diminished mRNA or protein expression.
View Article and Find Full Text PDFThe extraction and isolation of native bacterial proteins continue to be valuable technical pursuits in order to understand bacterial physiology, screen for virulence determinants, and describe antigens. In this chapter, methods for the manipulation of whole mycobacterial cells are described in detail. Specifically, the concentration of spent culture filtrate media is described in order to permit separation of soluble, secreted proteins; several discrete separation techniques, including precipitation of protein mixtures with ammonium sulfate and separation of proteins by hydrophobic chromatography are also provided.
View Article and Find Full Text PDFAlthough leprosy is curable with drug treatment, the identification of biomarkers of infection, disease progression and treatment efficacy would greatly help to reduce the overall prevalence of the disease. Reliable biomarkers would also reduce the incidence of grade-2 disability by ensuring that those who are most at risk are diagnosed and treated early or offered repeated treatments in the case of relapse. In this study, we examined the reactivity of sera from lepromatous and tuberculoid leprosy patients (LPs) against a panel of 12 recombinant Mycobacterium leprae proteins and found that six proteins were strongly recognised by multibacillary (MB) patients, while only three were consistently recognised by paucibacillary patients.
View Article and Find Full Text PDF