Background: Although transposons have been identified in almost all organisms, genome-wide information on mariner elements in Aphididae remains unknown. Genomes of Acyrthosiphon pisum, Diuraphis noxia and Myzus persicae belonging to the Macrosiphini tribe, actually available in databases, have been investigated.
Results: A total of 22 lineages were identified.
The piggyBac transposable element was originally isolated from the cabbage looper moth, Trichoplusia ni, in the 1980s. Despite its early discovery and specificity compared to the other Class II elements, the diversity and evolution of this superfamily have been only partially analyzed. Two main types of elements can be distinguished: the piggyBac-like elements (PBLE) with terminal inverted repeats, untranslated region, and an open reading frame encoding a transposase, and the piggyBac-derived sequences (PGBD), containing a sequence derived from a piggyBac transposase, and which correspond to domesticated elements.
View Article and Find Full Text PDFGenomic variation among species is commonly driven by transposable element (TE) invasion; thus, the pattern of TEs in a genome allows drawing an evolutionary history of the studied species. This paper reports in vitro and in silico detection and characterization of irritans mariner-like elements (MLEs) in the genome and transcriptome of Bactrocera oleae (Rossi) (Diptera: Tephritidae). Eleven irritans MLE sequences have been isolated in vitro using terminal inverted repeats (TIRs) as primers, and 215 have been extracted in silico from the sequenced genome of B.
View Article and Find Full Text PDFThe 70kDa heat shock proteins (HSP70) are considered the most conserved members of the HSP family. These proteins are primordial to the cell, because of their implications in many cellular pathways (e. g.
View Article and Find Full Text PDFBackground: The Triatomine bug Rhodnius prolixus is a vector of Trypanosoma cruzi, which causes the Chagas disease in Latin America. R. prolixus can also transfer transposable elements horizontally across a wide range of species.
View Article and Find Full Text PDFMariner-like elements (MLEs) are Class II transposons present in all eukaryotic genomes in which MLEs have been searched for. This article reports the detection of MLEs in seven of the main fruit tree aphid species out of eight species studied. Deleted MLE sequences of 916-919 bp were characterized, using the terminal-inverted repeats (TIRs) of mariner elements belonging to the mauritiana Subfamily as primers.
View Article and Find Full Text PDFMariner-like elements (MLEs) are transposable elements able to move in the host genomes by a "cut and paste" mechanism. They have been found in numerous organisms. We succeeded in amplifying complete and truncated MLEs in the marine diatom Amphora acutiuscula.
View Article and Find Full Text PDFMobile elements using a "cut and paste" mechanism of transposition (Class II) are frequently prone to internal deletions and the question of the origin of these copies remains elusive. In this study, we looked for copies belonging to the Lemi Family (Tc1-mariner-IS630 SuperFamily) in the plant genomes, and copies within internal deletions were analyzed in detail. Lemi elements are found exclusively in Eudicots, and more than half of the copies have been deleted.
View Article and Find Full Text PDFBackground: Mariner elements represent the most successful family of autonomous DNA transposons, being present in various plant and animal genomes, including humans. The introduction and co-evolution of mariners within host genomes imply a strict regulation of the transposon activity. Biochemical data accumulated during the past decade have led to a convergent picture of the transposition cycle of mariner elements, suggesting that mariner transposition does not rely on host-specific factors.
View Article and Find Full Text PDFHawaiian Drosophila offer an excellent model for adaptive evolution. More than 500 species are reported in Hawaiian islands, and there is considerable diversity in behavior and morphology. Such diversity is mainly driven by sexual selection.
View Article and Find Full Text PDFThe higher levels of the classification of transposable elements (TEs) from Classes to Superfamilies or Families, is regularly updated, but the lower levels (below the Family) have received little investigation. In particular, this applies to the Families that include a large number of copies. In this article we propose an automatic classification of DNA sequences.
View Article and Find Full Text PDFWe present the evolution of the simple system of Meinhardt implemented in both static or dynamic two-dimensional structures of almost-squared cells. In a static structure of 8 x 4=32 to 128 x 128=16384 cells, the pattern observed is periodic. An algorithm allows us to divide the cells following the greater size, and to define a dynamic structure.
View Article and Find Full Text PDFThe identification of genes with large effects on sexual isolation and speciation is an important link between classic evolutionary genetics and molecular biology. Few genes that affect sexual isolation and speciation have been identified, perhaps because many traits influencing sexual isolation are complex behaviors. Cuticular hydrocarbons (CHs) of species of the Drosophila melanogaster group play a large role in sexual isolation by functioning as contact pheromones influencing mate recognition.
View Article and Find Full Text PDFD. simulans and D. melanogaster present two types of polymorphism in their cuticular hydrocarbon (HC) composition.
View Article and Find Full Text PDF