Publications by authors named "Jacques Treton"

Background: Alzheimer's disease (AD) and age-related macular degeneration (AMD) present similarities, particularly with respect to oxidative stress, including production of 4-Hydroxy-2- nonenal (HNE). AMD has been named the AD in the eye. The Müller cells (MC) function as a principal glia of the retina and maintain water/potassium, glutamate homeostasis and redox status.

View Article and Find Full Text PDF

Trans fatty acids (TFAs) mainly arise from 2 major sources: natural ruminal hydrogenation and industrial partial catalytic hydrogenation. Increasing evidence suggests that most TFAs and their isomers cause harmful health effects (that is, increased risk of cardiovascular diseases). Nevertheless, in spite of the existence of an international policy consensus regarding the need for public health action, several countries (for example, France) do not adopt sufficient voluntary approaches (for example, governmental regulations and systematic consumer rejections) nor sufficient industrial strategies (for example, development of healthier manufacturing practices and innovative processes such as fat interesterifications) to eliminate deleterious TFAs from processed foods while ensuring the overall quality of the final product (for example, nutritional value and stability).

View Article and Find Full Text PDF

Introduction: Trans-fatty acids (TFAs) can be produced either from bio-hydrogenation in the rumen of ruminants or by industrial hydrogenation. While most of TFAs' effects from ruminants are poorly established, there is increasing evidence that high content of industrial TFAs may cause deleterious effects on human health and life span.

Material And Methods: Indeed, several epidemiological and experimental studies strongly suggest that high content of most TFA isomers could represent a higher risk of developing cardiovascular diseases by a mechanism that lowers the "good HDL cholesterol" and raises the "bad LDL cholesterol.

View Article and Find Full Text PDF

In normal retinas, amyloid-β (Aβ) accumulates in the subretinal space, at the interface of the retinal pigment epithelium, and the photoreceptor outer segments. However, the molecular and cellular effects of subretinal Aβ remain inadequately elucidated. We previously showed that subretinal injection of Aβ(1-42) induces retinal inflammation, followed by photoreceptor cell death.

View Article and Find Full Text PDF

Age-related macular degeneration is characterized by the formation of drusen containing amyloid-β (Aβ) and the degeneration of photoreceptors. To explore the largely unknown role of Aβ in the retina, we investigated the effects on photoreceptors of the oligomeric form of Aβ(1-42). Subretinal injection of the Aβ peptide induced misplaced expression of recoverin and synaptophysin in the photoreceptors, oxidative stress in their inner and outer segments, and finally apoptosis.

View Article and Find Full Text PDF

The etiology of age-related macular degeneration (AMD), the leading cause of blindness in the developed world, remains poorly understood, but may be related to cumulative oxidative stress. The prime target of the disease is the retinal pigmented epithelium (RPE). To study the molecular mechanisms underlying RPE degeneration, we investigated whether repetitive oxidative stress induced premature senescence in RPE cells from the human ARPE-19 cell line.

View Article and Find Full Text PDF

Purpose: Oxidative stress is thought to contribute to the pathogenesis of age-related macular degeneration (AMD), which involves retinal pigmented epithelial (RPE) cell death. However, signaling pathways involved in the oxidative-stress-induced RPE cell death are poorly understood. This study was conducted to investigate the involvement of the MAP kinase pathways during the induction of RPE cell death by oxidative stress.

View Article and Find Full Text PDF

In 1990, following an idea arising from an Inserm study section on aging, the Diplôme d'études approfondies (DEA) de Biologie du vieillissement was created. Since then, more than 300 students have followed these courses which cover the cellular mechanisms of aging and associated diseases, from basic causes of aging to CNS and sensory organs aging, as well as nutritional aspects, sarcopenia and osteoporosis, vascular and neuroendocrine aging. More than 150 thesis have been defended and more than a quarter of students has been recruited on permanent positions in French universities and research institutions (10 %) and hospitals (16 %).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how ethanol causes cell death in ARPE-19 cells, focusing on the leucocyte elastase inhibitor (LEI) pathway.
  • Ethanol exposure resulted in significant cell death, with 50% of cells dying at 4% ethanol and all cells at 10% ethanol, accompanied by nuclear changes and DNA fragmentation.
  • The findings suggest that ethanol induces a unique cell death mechanism combining features of apoptosis and necrosis, likely linked to the activation of LEI and subsequent conversion to L-DNase II.
View Article and Find Full Text PDF