Publications by authors named "Jacques Penelle"

A new process, PMOFSA, is described here, that opens the way for the one-pot straightforward and versatile manufacture of polymer-MOF nanoparticles in water. It can be expected that this study will not only expand the scope of preparation of polymer-MOF nano-objects but also inspire researchers in the field to prepare a new generation of polymer-MOF hybrid materials.

View Article and Find Full Text PDF

Hypothesis: We describe the possibility of using the same block copolymer carriers prepared by PISA for in situ drug encapsulation or drug conjugation.

Experiments: Block copolymers containing poly((ethylene glycol) methacrylate)-co-poly(pentafluorophenyl methacrylate)-b-poly(hydroxypropyl methacrylate) (P((PEGMA-co-PFBMA)-b-PHPMA)) were synthesized at 10 wt% using PISA. The first approach involved in situ Doxorubicin (DOX) loading during PISA, while the second exhibited surface functionalization of PISA-made vesicles with dual drug therapies, N-acetyl cysteine (NAC) and DOX using para-fluoro-thiol reaction (PFTR) and carbodiimide chemistry, respectively.

View Article and Find Full Text PDF

Stimuli-responsive amphiphilic block copolymers have emerged as promising nanocarriers for enhancing site-specific and on-demand drug release in response to a range of stimuli such as pH, the presence of redox agents, and temperature. The formulation of amphiphilic block copolymers into polymeric drug-loaded nanoparticles is typically achieved by various methods (e.g.

View Article and Find Full Text PDF

In this study, a novel anticancer reagent based on polyplexes nanoparticles was developed. These nanoparticles are obtained by mixing negatively charged polyelectrolytes with the antitumour cationically-charged pseudopeptide N6L. Using two experimental tumor pancreatic models based upon PANC-1 and mPDAC cells, we found that the antitumour activity of N6L is significantly raised its incorporation in polyplexed nanoparticles.

View Article and Find Full Text PDF

We study the self-assembly of a new family of amphiphilic liquid crystal (LC) copolymers synthesized by the anionic ring-opening polymerization of a new cholesterol-based LC monomer, 4-(cholesteryl)butyl ethyl cyclopropane-1,1-dicarboxylate. Using the t-BuP(4) phosphazene base and thiophenol or a poly(ethylene glycol) (PEG) functionalized with thiol group to generate in situ the initiator during the polymerization, LC homopolymer and amphiphilic copolymers with narrow molecular weight distributions were obtained. The self-assemblies of the LC monomer, homopolymer, and block copolymers in bulk and in solution were studied by small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

The successful activation observed when using Bu(t) P(4) phosphazene base and thiophenol or bisthiols for the anionic ring opening polymerization (ROP) of di-n-propyl cyclopropane-1,1-dicarboxylate is described. Well-defined monofunctional or difunctional polymers with a very narrow molecular weight distribution were obtained through a living process. Quantitative end-capping of the propagating malonate carbanion was accessible by using either an electrophilic reagent such as allyl bromide or a strong acid such as HCl.

View Article and Find Full Text PDF

The development of robust methodologies to control the solid-state structure of polymeric materials by appropriate design of the macromolecular architecture has a crucial impact on the mechanical properties of these materials. Here, we demonstrate the feasibility of controlling chain folding of polymers by steric interactions only, in contrast to previous attempts aimed at engineering polymer crystallization through hydrogen bonding. In a linear synthetic macromolecule similar to polyethylene, we encoded structural instructions that are translated during a crystallization process to generate a unique, semi-crystalline morphology with structure-controlled crystal thickness of approximately 5 nm that remains constant over a wide temperature range.

View Article and Find Full Text PDF

Several mono- and bisindole quaternary alkaloids isolated from the stem bark of Strychnos guianensis have recently been shown to be effective blockers of neuromuscular transmission in mice. In this study, we used a human clonal cell line (TE671) expressing muscle-type nicotinic acetylcholine receptors. The agonist carbamylcholine activated a receptor-mediated (86)Rb(+) efflux and this activation was antagonized by the indole alkaloids, the most active being bisindole bisquaternary compounds.

View Article and Find Full Text PDF

A model system for the characterization of molecular recognition events in molecularly imprinted polymers (MIPs) is presented. The use of a biologically inspired, three-point hydrogen-bonding motif and a thin film polymeric matrix allows for pre- and post-polymerization binding properties to be characterized by infrared spectroscopy. A method to determine binding constants was developed and utilized before and after cross-linking.

View Article and Find Full Text PDF