We report here the discovery and pharmacological characterization of N-(1-benzyl-1H-pyrazol-3-yl)-2-phenylacetamide derivatives as potent, selective, brain-penetrating T-type calcium channel blockers. Optimization focused mainly on solubility, brain penetration, and the search for an aminopyrazole metabolite that would be negative in an Ames test. This resulted in the preparation and complete characterization of compound 66b (ACT-709478), which has been selected as a clinical candidate.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2017
We identified and characterized a series of pyrrole amides as potent, selective Ca3.2-blockers. This series culminated with the identification of pyrrole amides 13b and 26d, with excellent potencies and/or selectivities toward the Ca3.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2017
We identified and characterized a series of pyrazole amides as potent, selective Ca3.1-blockers. This series culminated with the identification of pyrazole amides 5a and 12d, with excellent potencies and/or selectivities toward the Ca3.
View Article and Find Full Text PDFDespite the availability of numerous antiepileptic drugs, 20-30% of epileptic patients are pharmacoresistant with seizures not appropriately controlled. Consequently, new strategies to address this unmet medical need are required. T-type calcium channels play a key role in neuronal excitability and burst firing, and selective triple T-type calcium channel blockers could offer a new way to treat various CNS disorders, in particular epilepsy.
View Article and Find Full Text PDFRalA and RalB constitute a family of highly similar Ras-related GTPases widely distributed in different tissues. Recently, active forms of Ral proteins have been shown to bind to the exocyst complex, implicating them in the regulation of cellular secretion. Since RalA is present on the plasma membrane in neuroendocrine chromaffin and PC12 cells, we investigated the potential role of RalA in calcium-regulated exocytotic secretion.
View Article and Find Full Text PDF