The prediction of implant behavior in vivo by the use of easy-to-perform in vitro methods is of great interest in biomaterials research. Simulated body fluids (SBFs) have been proposed and widely used to evaluate the bone-bonding ability of implant materials. In view of its limitations, we report here a rapid in vitro method based on calcium titration for the evaluation of in vivo bioactivity.
View Article and Find Full Text PDFPrecipitated oxalates are often nanostructured and can be used as precursors for nanostructured oxides for different applications. The modification of the particle shape and nanostructures of both copper and cobalt oxalates has been demonstrated using polymeric additives or complexing counter-ions. In the case of cobalt oxalate the characteristic elongated rod particle shape (axial ratio of 10) can be modified by using polymethymethacrylate (PMMA) to produce particles with lower axial ratios of 2, through cubes all the way to platelets (axial ratio 0.
View Article and Find Full Text PDFOur work investigates the precipitation mechanism of a seeded calcium carbonate reaction, by using cryogenic TEM to observe the early stages of the reaction. The early precipitation of a hydrated phase is proposed as an intermediate phase before transformation into calcite. Thermodynamic modeling in conjunction with pH, surface potential measurements, and colloidal stability modeling demonstrate that calcite growth is dominated by agglomeration.
View Article and Find Full Text PDFThermodynamic solubility calculations are normally only related to thermodynamic equilibria in solution. In this paper, we extend the use of such solubility calculations to help elucidate possible precipitation reaction pathways during the entire reaction. We also estimate the interfacial energy of particles using only solubility data by a modification of Mersmann's approach.
View Article and Find Full Text PDFA large part of the scientific community has accepted the paradigm that a simulated body solution (SBF) can be used to test the bioactivity of a material. This is exemplified by the rapidly increasing number of publications using this test. The aim of this document is to demonstrate that (i) there is presently not enough scientific data to support this assumption, and (ii) even though the assumption was valid, the way the test is generally conducted leaves room for improvement.
View Article and Find Full Text PDFThe goal of the present study was to assess the possibility to change the composition of a calcium phosphate scaffold from a high-temperature phase to a phase only stable at or close to room temperature without macrostructural changes. For that purpose, macroporous beta-TCP scaffolds were converted into alpha-TCP by high-temperature thermal treatment and then dipped into a phosphoric acid solution to obtain a more acidic calcium phosphate phase called monetite or dicalcium phosphate (DCP; CaHPO4). Two different solid-to-liquid ratios (SLR: 0.
View Article and Find Full Text PDFThe possibility of controlling materials properties by tailoring their substructure at the nanometer scale is a current topic of great interest. To do so, a fundamental understanding of the growth mechanism is of key importance and an analytical challenge as nanostructured materials are often produced by precipitation methods at high supersaturations where formation kinetics are fast. The current study focuses on the precipitation of copper oxalate, which has been previously shown to produce self-assembled ordered nanostructured particles with the promise of being able to tailor this nanometer substructure.
View Article and Find Full Text PDFUnderstanding and controlling precipitation reactions is a major challenge for industrial crystallization. Calcium carbonate is a widely studied system: more than 3000 papers have been devoted to the subject over the past 10 years. The first step of the precipitation of calcium carbonate, from relatively concentrated solutions (0.
View Article and Find Full Text PDFThis study was undertaken to understand the biodegradation mechanisms of calcium phosphate (Ca-P) biomaterials with different crystallization. Two types of sintered Ca-P porous ceramic (HA and beta-TCP) and a Ca-P bone cement (CPC) were implanted into cavities drilled in rabbit femoral and tibiae condyles. The results have shown that a material biodegradation was rapid in the beta-TCP and the CPC, but very weak in the HA.
View Article and Find Full Text PDF