Publications by authors named "Jacques Joyard"

Can we understand how plant cell metabolism really works? An integrated large-scale modelling of plant metabolism predictive model would make possible to analyse the impact of disturbances in environmental conditions on cellular functioning and diversity of plant-made molecules of interest. ChloroKB, a Web application initially developed for exploration of Arabidopsis chloroplast metabolic network now covers Arabidopsis mesophyll cell metabolism. Interconnected metabolic maps show subcellular compartments, metabolites, proteins, complexes, reactions, and transport.

View Article and Find Full Text PDF

On November 4, 2018, Roland Douce, Professor Emeritus at the University of Grenoble, France, died at the age of 79. In Grenoble, where he spent most of his scientific career, Roland Douce created a world-renowned school of plant science, studying the structure, functions, and interactions of plant organelles involved in photosynthesis, respiration, and photorespiration. His main achievements concern the chemical and functional characterization of chloroplast envelope membranes, the demonstration of the uniqueness of plant mitochondria, and the integration of metabolism within the plant cell, among manifold activities.

View Article and Find Full Text PDF

Background: Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein.

View Article and Find Full Text PDF

Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the main lipids in photosynthetic membranes in plant cells. They are synthesized in the envelope surrounding plastids by MGD and DGD galactosyltransferases. These galactolipids are critical for the biogenesis of photosynthetic membranes, and they act as a source of polyunsaturated fatty acids for the whole cell and as phospholipid surrogates in phosphate shortage.

View Article and Find Full Text PDF

Copper is an essential plant micronutrient playing key roles in cellular processes, among them photosynthesis. In Arabidopsis thaliana, copper delivery to chloroplasts, mainly studied by genetic approaches, is thought to involve two P(IB)-type ATPases: AtHMA1 and AtHMA6/PAA1. The lack of biochemical characterization of AtHMA1 and PAA1, and more generally of plant P(IB)-type ATPases, is due to the difficulty of getting high amounts of these membrane proteins in an active form, either from their native environment or after expression in heterologous systems.

View Article and Find Full Text PDF

Plastids are semiautonomous organelles restricted to plants and protists. These plastids are surrounded by a double membrane system, or envelope. These envelope membranes contain machineries to import nuclear-encoded proteins, and transporters for ions or metabolites, but are also essential for a range of plastid-specific metabolisms.

View Article and Find Full Text PDF

Background: Despite their functional and biotechnological importance, the study of membrane proteins remains difficult due to their hydrophobicity and their low natural abundance in cells. Furthermore, into established heterologous systems, these proteins are frequently only produced at very low levels, toxic and mis- or unfolded. Lactococcus lactis, a gram-positive lactic bacterium, has been traditionally used in food fermentations.

View Article and Find Full Text PDF

Recent advances in the proteomics field have allowed a series of high throughput experiments to be conducted on chloroplast samples, and the data are available in several public databases. However, the accurate localization of many chloroplast proteins often remains hypothetical. This is especially true for envelope proteins.

View Article and Find Full Text PDF

Recent advances in the proteomic field have allowed high-throughput experiments to be conducted on chloroplast samples. Many proteomic investigations have focused on either whole chloroplast or sub-plastidial fractions. To date, the Plant Protein Database (PPDB, Sun et al.

View Article and Find Full Text PDF

Recent advances in the proteomic field have allowed high throughput experiments to be conducted on chloroplast samples and the data are available in several databases such as the Plant Protein Database (PPDB), or the SubCellular Proteomic Database (SUBA). However, the accurate localization of many proteins that were identified in different subplastidial compartments often remains hypothetical, thus making quantitative proteomics important for going a step further into the knowledge of Arabidopsis thaliana chloroplast proteins with regard to their accurate localization within the chloroplast. Spectral counting, a semi-quantitative proteomic strategy based on accurate mass and time tags (AMT), was used to build up AT_CHLORO, a comprehensive chloroplast proteome database with curated subplastidial localization.

View Article and Find Full Text PDF

Mitochondria play a key role in the life and death of eukaryotic cells, yet the full spectrum of mitochondrial functions is far from being fully understood, especially in photosynthetic organisms. To advance our understanding of mitochondrial functions in a photosynthetic cell, an extensive proteomic survey of Percoll-purified mitochondria from the metabolically versatile, hydrogen-producing green alga Chlamydomonas reinhardtii was performed. Different fractions of purified mitochondria from Chlamydomonas cells grown under aerobic conditions were analyzed by nano-liquid chromatography-electrospray ionization-mass spectrometry after protein separation on sodium dodecyl sulfate polyacrylamide gel electrophoresis or on blue-native polyacrylamide gel electrophoresis.

View Article and Find Full Text PDF

Chloroplasts are plant-specific organelles. They are the site of photosynthesis but also of many other essential metabolic pathways, such as syntheses of amino acids, vitamins, lipids, and pigments. This unit describes the isolation and purification of chloroplasts from Arabidopsis and spinach leaves.

View Article and Find Full Text PDF

The availability of the complete genome sequence of Arabidopsis thaliana and of large collections of insertion mutants paved the way for systematic studies of gene functions in this organism, thus requiring adapting biochemical and physiological tools to this model plant. For physiological analysis of photosynthesis, methods combining high level of chloroplast purity and preservation of the photosynthetic activity were missing. Here, we describe a rapid method (less than 1h) to obtain Percoll-purified and photosynthetically active chloroplasts from Arabidopsis leaves retaining almost 90% of the Vmax of photosynthesis measured in the starting leaves from plants grown under a light intensity of 150mumolphotonm(-2)s(-1) and 80% of their initial photosynthetic rate after 3h of storage.

View Article and Find Full Text PDF

Proteomics provides a powerful tool to characterize the protein content of an organelle. However, identifications obtained through mass spectrometry and database searching only make sense if the organelle sample is not heavily cross-contaminated. Besides the proteomic analysis, which gives an overview of possible cross-contamination, biochemical methods can be used to assess sample purity.

View Article and Find Full Text PDF

Sub-cellular proteomics has proven to be a powerful approach to link the information contained in sequenced genomes from eukaryotic cells to the functional knowledge provided by studies of cell compartments. Chloroplasts are plant-specific organelles and are the site of photosynthesis and also of many other essential metabolic pathways, like syntheses of amino acids, vitamins, and pigments. They contain several sub-organellar compartments: the envelope (the two-membrane system surrounding the organelle), the stroma (the internal soluble phase), and the thylakoid membranes (the internal membrane system).

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on chloroplast envelope quinone oxidoreductase (ceQORH), a protein in the inner plastid envelope that does not have a cleavable chloroplast transit sequence for import.
  • It was found that the import of ceQORH into chloroplasts requires ATP and depends on specific receptor components on the outer plastid surface, rather than the commonly used Toc159 and Toc75 proteins.
  • The research also reveals that ceQORH has distinct amino acid domains that play a crucial role in its import, indicating a unique pathway for proteins lacking transit sequences in plastids.
View Article and Find Full Text PDF

Chloroplasts are bounded by a pair of outer membranes, the envelope, that is the only permanent membrane structure of the different types of plastids. Chloroplasts have had a long and complex evolutionary past and integration of the envelope membranes in cellular functions is the result of this evolution. Plastid envelope membranes contain a wide diversity of lipids and terpenoid compounds serving numerous biochemical functions and the flexibility of their biosynthetic pathways allow plants to adapt to fluctuating environmental conditions (for instance phosphate deprivation).

View Article and Find Full Text PDF

Protoporphyrin IX is the last common intermediate between the heme and chlorophyll biosynthesis pathways. The addition of magnesium directs this molecule toward chlorophyll biosynthesis. The first step downstream from the branchpoint is catalyzed by the magnesium chelatase and is a highly regulated process.

View Article and Find Full Text PDF
Article Synopsis
  • Proteomics helps connect genome data from plants, like Arabidopsis, to functional knowledge of plant cell compartments, but studying membrane proteins is still difficult.
  • Effective membrane proteomic analysis can be enhanced by using highly purified membrane fractions and fractionating proteins based on their hydrophobicity.
  • The article focuses on methods for preparing and characterizing pure plant membrane fractions, specifically from plasma membranes and chloroplast envelopes, using techniques like chloroform/methanol extraction and saline treatments for further proteomic analysis.
View Article and Find Full Text PDF

Proteomics is a very powerful approach to link the information contained in sequenced genomes, like that of Arabidopsis, to the functional knowledge provided by studies of plant cell compartments. This article summarizes the different steps of a versatile strategy that has been developed to decipher plant membrane proteomes. Initiated with envelope membranes from spinach chloroplasts, this strategy has been adapted to thylakoids, and further extended to a series of membranes from the model plant Arabidopsis: chloroplast envelope membranes, plasma membrane, and mitochondrial membranes.

View Article and Find Full Text PDF

Pyruvate formate-lyase (PFL) catalyzes the non-oxidative conversion of pyruvate to formate and acetyl-CoA. PFL and its activating enzyme (PFL-AE) are common among strict anaerobic and microaerophilic prokaryotes but are very rare among eukaryotes. In a proteome survey of isolated Chlamydomonas reinhardtii mitochondria, we found several PFL-specific peptides leading to the identification of cDNAs for PFL and PFL-AE, establishing the existence of a PFL system in this photosynthetic algae.

View Article and Find Full Text PDF

Although ions play important roles in the cell and chloroplast metabolism, little is known about ion transport across the chloroplast envelope. Using a proteomic approach specifically targeted to the Arabidopsis chloroplast envelope, we have identified HMA1, which belongs to the metal-transporting P1B-type ATPases family. HMA1 is mainly expressed in green tissues, and we validated its chloroplast envelope localization.

View Article and Find Full Text PDF

Proteomics is a very powerful approach to link the information contained in sequenced genomes, like Arabidopsis, to the functional knowledge provided by studies of plant cell compartments, such as chloroplast envelope membranes. This review summarizes the present state of proteomic analyses of highly purified spinach and Arabidopsis envelope membranes. Methods targeted towards the hydrophobic core of the envelope allow identifying new proteins, and especially new transport systems.

View Article and Find Full Text PDF

Proteomics covers the systematic analysis of proteins expressed by a genome, from the identification of their primary amino-acid sequence to the determination of their relative amounts, their state of modification and association with other proteins or molecules of different types. Tremendous progress has been made in this field in the past few years, especially in plant biology, mostly due to major developments of mass spectrometry dedicated to protein analyses and advanced information technology. The aim of this special issue of Plant Physiology and Biochemistry devoted to Plant Proteomics is not to present a comprehensive coverage of this rapidly expanding field but to focus on the representation of some key aspects to illustrate the importance of proteomics in plant functional genomics.

View Article and Find Full Text PDF

In many soils plants have to grow in a shortage of phosphate, leading to development of phosphate-saving mechanisms. At the cellular level, these mechanisms include conversion of phospholipids into glycolipids, mainly digalactosyldiacylglycerol (DGDG). The lipid changes are not restricted to plastid membranes where DGDG is synthesized and resides under normal conditions.

View Article and Find Full Text PDF