Publications by authors named "Jacques Greiner"

We describe the formulation of synthetic virus models based on ionic compounds bearing the polymerizable 1,2-dithiolane moiety. First, cationic amphiphiles containing the polymeric inducer were prepared and used to efficiently condense a DNA plasmid (pDNA) into a highly monodisperse population of small polymeric cationic DNA nanoparticles (NPs; Dh ∼100 nm). These nonspecific cationic particles were then functionalized with anionic PEGylated conjugates, also based on the 1,2-dithiolane motifs, in order to produce stable and fully dispersible stealth DNA nanoparticles.

View Article and Find Full Text PDF
Article Synopsis
  • Molecular motors play a crucial role in transporting essential cargoes like vesicles and proteins within cells, but improving drug delivery to the nucleus using nanocarriers is a key challenge in nanotechnology.
  • Researchers developed a quick and genetically manageable method to assess the efficiency of fluospheres in Drosophila oocytes, using microinjection and time-lapse microscopy.
  • Their findings indicated that a specific binding motif enhances the transport of nanoparticles via microtubules and dynein motors, establishing Drosophila oocytes as a promising model for designing motor-driven nanovectors.
View Article and Find Full Text PDF

In an approach to improve the pharmacological properties and pharmacokinetic profiles of the current protease inhibitors (PIs) used in clinics, and consequently, their therapeutic potential, we performed the synthesis of PI-spacer-valine prodrugs (PI=saquinavir, nelfinavir and indinavir; spacer=-C(O)(CH(2))(5)NH-), and evaluated their in vitro stability with respect to hydrolysis, anti-HIV activity, cytotoxicity, and permeation through a monolayer of Caco-2 cells (used as a model of the intestinal barrier), as compared with their parent PI and first generation of valine-PIs (wherein valine was directly connected through its carboxyl to the PIs). The PI-spacer-valine conjugates were prepared in two steps, in good yields, by condensing an acid derivative of the appropriate protected valine-spacer moiety with the PI, followed by deprotection of the valine protecting group. With respect to hydrolysis, we found that the PI-spacer-valine prodrugs were chemically more stable than the first generation of PI-Val prodrugs.

View Article and Find Full Text PDF

In an approach to improve the pharmacological properties, safety and pharmacokinetic profiles, and their penetration into HIV reservoirs or sanctuaries, and consequently, the therapeutic potential of the current protease inhibitors (PIs) used in clinics, we investigated the synthesis of various mannose-substituted saquinavir, nelfinavir, and indinavir prodrugs, their in vitro stability with respect to hydrolysis, anti-HIV activity, cytotoxicity, and permeation through a monolayer of Caco-2 cells used as a model of the intestinal barrier. Mannose-derived conjugates were prepared in two steps, in good yields, by condensing an acid derivative of a protected mannose with the PIs, followed by deprotection of the sugar protecting group. With respect to hydrolysis, these PI prodrugs are chemically stable with half-life times in the 50-60 h range that are compatible with an in vivo utilization aimed at improving the absorption/penetration or accumulation of the prodrug in specific cells/tissues and liberation of the active free drug inside HIV-infected cells.

View Article and Find Full Text PDF

This paper reports on the rational design of a series of new 6-fluoroquinolones by QSAR analysis against Toxoplasma (T.) gondii, their synthesis, their biological evaluation against T. gondii and Plasmodium (P.

View Article and Find Full Text PDF

Owing to the rapid emergence of multi-resistant strains of Plasmodium spp. (the causative agents of malaria) and the limitations of drugs used against Toxoplasma gondii (an important opportunistic pathogen associated with AIDS and congenital birth defects), the discovery of new therapeutical targets and the development of new drugs are needed. The presence of the prokaryotic-like organelle in apicomplexan parasites (i.

View Article and Find Full Text PDF

Protease inhibitors are successfully used for the treatment of acquired immune deficiency syndrome (AIDS) although their biopharmaceutical characteristics are not optimal. Prodrugs have therefore been synthesized to increase protease inhibitor bioavailability and brain distribution. Among several compounds tested, a valine derivative of indinavir (Ind(8)-Val) showed promising characteristics using an in-vitro Caco-2 cell model.

View Article and Find Full Text PDF

With the aim of improving the pharmacological properties of current protease inhibitors (PIs), the synthesis of various acyl and carbamate amino acid- or diglyceride-containing prodrugs derived from saquinavir, indinavir and nelfinavir, their in vitro stability with respect to hydrolysis and their anti-HIV activity in CEM-SS and MT4 cells have been investigated. l-Leucine (Leu) and l-phenylalanine (Phe) were connected through their carboxyl to the PIs while l-tyrosine (Tyr) was conjugated through its aromatic hydroxyl via various spacer units. Hydrolysis of the prodrug with liberation of the active free drug was crucial for antiviral activity.

View Article and Find Full Text PDF

The synthesis of bipharmacophore anti-HIV compounds which, in a single molecule, combine two ligands, that is, the bicyclam AMD3100 and a GalCer analogue, that might inhibit several steps of the complex virus/cell cascade interactions has been performed. The 'double-drug' Gal-AMD3100 conjugates elicited inhibitory effects on T (or X4)-tropic HIV-1 replication in all CXCR4 expressing cell lines with EC(50) values ranging from 0.25 to 6.

View Article and Find Full Text PDF

Despite the efficiency of the present polytherapies against AIDS, HIV replication continues indicating difficulties in drug adherence, drug-drug interactions, resistance issues, and the existence of reservoirs or sanctuaries for the virus. Moreover, most of the current FDA-approved HIV protease inhibitors (PIs) display disadvantageous physicochemical and pharmacological properties such as low water solubility, low oral bioavailability and/or low level of penetration into the HIV sanctuaries resulting from their in vivo binding to the plasma proteins and to the Multi-Drug-Resistant P-glycoprotein, their rapid metabolization and inactivation by the liver cytochrome P450 enzymes. To overcome these suboptimal pharmacokinetics, high daily doses must be ingested, which complicate patient adherence to the prescribed regimen and contribute to the appearance of serious long-term metabolic complications and to the decrease of the viral treatment outcome.

View Article and Find Full Text PDF

Purpose: [corrected] This study is dedicated to the permeation of various amino acid-, D-glucose-, and PEG-conjugates of indinavir, saquinavir, and nelfinavir across monolayers of Caco-2 cells as models of the intestinal barrier. This screening is aimed at detecting the most promising prodrugs for improving the intestinal absorption of these protease inhibitors.

Methods: The bidirectional transport of the prodrugs was investigated using P-gp-expressing Caco-2 monolayers grown on membrane inserts using high-performance liquid chromatography for quantitation.

View Article and Find Full Text PDF