An Antarctic soil metagenomic library was screened for lipolytic enzymes and allowed for the isolation of a new cytosolic esterase from the a/b hydrolase family 6, named MHlip. This enzyme is related to hypothetical genes coding esterases, aryl-esterases and peroxydases, among others. MHlip was produced, purified and its activity was determined.
View Article and Find Full Text PDFPenicillium griseofulvum possesses two endo-(1,4)-beta-xylanase genes, PgXynA and PgXynB, belonging to family 11 glycoside hydrolases. The enzymes share 69% identity, a similar hydrolysis profile i.e.
View Article and Find Full Text PDFPenicillium griseofulvum xylanase (PgXynA) belongs to family 11 glycoside hydrolase. It exhibits unique amino acid features but its three-dimensional structure is not known. Based upon the X-ray structure of Penicillium funiculosum xylanase (PfXynC), we generated a three-dimensional model of PgXynA by homology modeling.
View Article and Find Full Text PDFTwo genes encoding family 11 endo-(1,4)-beta-xylanases from Penicillium griseofulvum (PgXynA) and Penicillium funiculosum (PfXynC) were heterologously expressed in Escherichia coli as glutathione S-transferase fusion proteins, and the recombinant enzymes were purified after affinity chromatography and proteolysis. PgXynA and PfXynC were identical to their native counterparts in terms of molecular mass, pI, N-terminal sequence, optimum pH, and enzymatic activity towards arabinoxylan. Further investigation of the rate and pattern of hydrolysis of PgXynA and PfXynC on wheat soluble arabinoxylan showed the predominant production of xylotriose and xylobiose as end products.
View Article and Find Full Text PDF