Publications by authors named "Jacques Dumonceau"

The present study was initiated to determine the capacity of sulfide minerals (pyrite FeS2 and chalcopyrite CuFeS2) to delay the migration of inorganic selenium species in geological formations. Interactions between Se(IV) and Se(-II) and synthetic and natural sulfide minerals were investigated under anoxic conditions using the batch method. Significant sorption of selenium occurred under acidic conditions.

View Article and Find Full Text PDF

Compounds containing copper are likely candidates to delay iodide migration in environmental media through the formation of sparingly soluble phases. Preliminary experiments showed that iodide was neither sorbed onto chalcopyrite nor by a binary system pyrite/copper(II), although significant amounts of copper were present at the pyrite surface. In the present study, spectroscopic studies (XPS, XANES and EXAFS) were thus performed to determine the nature of sorbed copper species.

View Article and Find Full Text PDF

Spectroscopic and physicochemical data, X-ray photoelectron spectroscopy (XPS), solid-state (13)C cross-polarization magic-angle-spinning NMR, GC/MS, specific surface area, site density, and surface acidity constants have been recorded or determined for a ligno-cellulosic substrate (LS) extracted from straw. Its copper(II)-bound ability has also been studied. The LS solid that exhibits two types of binding sites, carboxylic and phenolic groups, has a great affinity for copper(II), with a maximum of adsorption at around 4 mg g(-1) as early as the pH reaches 6.

View Article and Find Full Text PDF

Understanding sorption processes is fundamental for the prediction of radionuclide migration in the surroundings of a deep geological disposal of high-level nuclear wastes. Pyrite (FeS2) is a mineral phase often present as inclusions in temperate soils. Moreover, it constitutes an indirect corrosion product of steel, a containment material that is candidate to confine radionuclides in deep geological disposals.

View Article and Find Full Text PDF

An experimental and theoretical study of Eu(III) sorption on goethite surface was performed in the presence of different background electrolytes (NaCl, NaNO3, KNO3). Results were described using a simple surface complexation, the double-layer model (DLM), and calculations were performed using either Fiteql3.2 or Jchess codes.

View Article and Find Full Text PDF

In this paper, we present our study of the speciation of copper and hexavalent chromium sorbed onto a lignocellulosic substrate, using analytical microscopy. The lignocellulosic substrate constitutes a low-cost biomaterial that can be used in wastewater treatment. Transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDXS) was used to determine the speciation of the two metal ions on the constitutive moieties of the lignocellulosic substrate.

View Article and Find Full Text PDF

The sorption of selenite and selenate ions from aqueous solutions was investigated on hydroxyapatite, fluorapatite, goethite and hematite, in order to simulate the behavior of radioactive selenium in natural or artificial sorbing media. Correlation studies with acido-basic properties and solubility of the solids were also performed. The sorption is pH dependant, but these solids are very efficient for retaining selenite at pH values generally encountered in natural waters, with however higher K(d) values for oxides than apatites.

View Article and Find Full Text PDF

Lignocellulosic substrate (LS), which is a low cost biomaterial, has a strong complexing ability and can be used in the treatment of wastewaters as biosorbentto remove heavy metals. The speciation of copper and lead to this biomaterial has been studied by X-ray absorption spectroscopy. The copper(II) has a 6-coordinate structure with four oxygen atoms in the equatorial plane at 1.

View Article and Find Full Text PDF

Quenching of the fluorescence of a Leonardite humic acid by Co(II) has been studied at different pH. The interaction was monitored by emission fluorescence and by synchronous fluorescence with two different offsets (deltalambda=20 and 80 nm). It was found that synchronous fluorescence performed with the smaller offset resolves the individual components of the heterogeneous material better than emission or synchronous fluorescence performed with the larger offset.

View Article and Find Full Text PDF

The sorption of copper(II) by wheat straw cell wall residue (CWR) was studied and revealed a relatively stable surface complexation on the acid sites of the substrate (carboxylic and phenolic moieties). The copper binding capacity at pH = 5.75 and ionic strength of 0.

View Article and Find Full Text PDF

To understand the complexation in solution and the sorption of iron(III) on soluble and solid fractions of lignin, a dimeric model (guaiacyl-beta-guaiacylglycerol ether, called beta-O-4) and a polymeric model (dehydrogenation polymer resulting from polymerization of coniferyl alcohol) of lignin have been synthesized and characterized with chromatographic, solution, and solid state (13)C CP-MAS NMR and XPS spectroscopies. The beta-O-4 dimer is a monoacid (HL). Potentiometric studies in aqueous solution at 25 degrees C and 1 mol L(-1) ionic strength (KNO(3)) indicated formation of two stable complexes, FeL(2+) and probably FeL(OH)(+), which shows that the soluble fraction of lignin binds metals, indicating that they are transported by water through the soils.

View Article and Find Full Text PDF

Ions binding to solid organic matter was investigated in this study. A simple surface complexation model, the diffuse double-layer model, was used to describe Pb(II), Cd(II), Zn(II), and Ni(II) binding to a lignocellulosic substrate extracted from wheat bran. The lignocellulosic substrate was represented by two acid sites: a low-pH ("carboxylic") site and a high-pH ("phenolic") site, the phenolic-type sites contributing significantly to the binding behavior, even at relatively low pH.

View Article and Find Full Text PDF