Publications by authors named "Jacques David"

Article Synopsis
  • Genetic diversity among species is influenced by life history traits, particularly mating systems, with self-pollinating species showing lower genetic diversity compared to outcrossing ones.
  • Research indicates that selfing amplifies linked selection, affecting genetic diversity across the genome, though it also may be influenced by population bottlenecks and turnover rates.
  • In a study of various grass species with differing mating systems, findings reveal that selfing significantly impacts genetic diversity and selection efficacy, suggesting adaptive traits are primarily found in regions with high recombination in outcrossing species.
View Article and Find Full Text PDF

The domestication of crops, coupled with agroecosystem development, is associated with major environmental changes and provides an ideal model of phenotypic plasticity. Here, we examined 32 genotypes of three tetraploid wheat (Triticum turgidum L.) subspecies, wild emmer, emmer, and durum wheat, which are representative of the key stages in the domestication of tetraploid wheat.

View Article and Find Full Text PDF

The introduction of Reduced height (Rht) dwarfing genes into elite wheat varieties has contributed to enhanced yield gain in high input agrosystems by preventing lodging. Yet, how modern selection for dwarfing has affected symbiosis remains poorly documented. In this study, we evaluated the response of both the plant and the arbuscular mycorrhizal fungus to plant genetic variation at a major Quantitative Trait Locus called QTL 4B2, known to harbor a Rht dwarfing gene, when forming the symbiosis.

View Article and Find Full Text PDF

The HIV-1 capsid has emerged as a tractable target for antiretroviral therapy. Lenacapavir, developed by Gilead Sciences, is the first capsid-targeting drug approved for medical use. Here, we investigate the effect of lenacapavir on HIV capsid stability and uncoating.

View Article and Find Full Text PDF

Image-guided microwave ablation and cementoplasty are minimally invasive techniques that have been used as part of a limb-sparing approach in the treatment of appendicular bone tumors in humans. The objective of this case report was to describe the feasibility and result of microwave ablation (MWA) and cementoplasty in a dog with stage-1 osteoblastic appendicular osteosarcoma of the right distal radius. A microwave antenna was inserted in the osteolytic area using computed tomography (CT) guidance.

View Article and Find Full Text PDF

Mixing crop cultivars has long been considered as a way to control epidemics at the field level and is experiencing a revival of interest in agriculture. Yet, the ability of mixing to control pests is highly variable and often unpredictable in the field. Beyond classical diversity effects such as dispersal barrier generated by genotypic diversity, several understudied processes are involved.

View Article and Find Full Text PDF

In ecology, an increase in genetic diversity within a community in natural ecosystems increases its productivity, while in evolutionary biology, kinship selection predicts that relatedness on social traits improves fitness. Varietal mixtures, where different genotypes are grown together, show contrasting results, especially for grain yield where both positive and negative effects of mixtures have been reported. To understand the effect of diversity on field performance, we grew 96 independent mixtures each composed with 12 durum wheat (Triticum turgidum ssp.

View Article and Find Full Text PDF

A classic example of phenotypic plasticity in plants is the suit of phenotypic responses induced by a change in the ratio of red to far-red light (R∶FR) as a result of shading, also known as the shade avoidance syndrome (SAS). While the adaptive consequences of this syndrome have been extensively discussed in natural ecosystems, how SAS varies within crop populations and how SAS evolved during crop domestication and breeding remain poorly known. In this study, we grew a panel of 180 durum wheat ( ssp.

View Article and Find Full Text PDF

Of the 13 known independent zoonoses of simian immunodeficiency viruses to humans, only one, leading to human immunodeficiency virus (HIV) type 1(M) has become pandemic, causing over 80 million human infections. To understand the specific features associated with pandemic human-to-human HIV spread, we compared replication of HIV-1(M) with non-pandemic HIV-(O) and HIV-2 strains in myeloid cell models. We found that non-pandemic HIV lineages replicate less well than HIV-1(M) owing to activation of cGAS and TRIM5-mediated antiviral responses.

View Article and Find Full Text PDF

Plant domestication can be viewed as a form of co-evolved interspecific mutualism between humans and crops for the benefit of the two partners. Here, we ask how this plant-human mutualism has, in turn, impacted beneficial interactions within crop species, between crop species, and between crops and their associated microbial partners. We focus on beneficial interactions resulting from three main mechanisms that can be promoted by manipulating genetic diversity in agrosystems: niche partitioning, facilitation, and kin selection.

View Article and Find Full Text PDF

The Neolithic and Bronze Age construction and habitation of the Stonehenge Landscape has been extensively explored in previous research. However, little is known about the scale of pre-Neolithic activity and the extent to which the later monumental complex occupied an 'empty' landscape. There has been a long-running debate as to whether the monumental archaeology of Stonehenge was created in an uninhabited forested landscape or whether it was constructed in an already partly open area of pre-existing significance to late Mesolithic hunter-gatherers.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) is the most extensively researched human pathogen. Despite this massive scientific endeavour, several fundamental viral processes remain enigmatic. One such critical process is uncoating-the event that releases the viral genome from the proteinaceous shell of the capsid during infection.

View Article and Find Full Text PDF

Agroecosystem diversification through increased crop genetic diversity could provide multiple services such as improved disease control or increased productivity. However, we still poorly understand how genetic diversity affects agronomic performance. We grew 179 inbred lines of durum wheat in pure stands and in 202 binary mixtures in field conditions.

View Article and Find Full Text PDF

Native African cereals (sorghum, millets) ensure food security to millions of low-income people from low fertility and drought-prone regions of Africa and Asia. In spite of their agronomic importance, the genetic bases of their phenotype and adaptations are still not well-understood. Here we focus on , which is the fifth cereal worldwide for grain production and constitutes the staple food for around 500 million people.

View Article and Find Full Text PDF

Mounting evidence indicates the key role of nitrogen (N) on diverse processes in plant, including development and defense. Using a combined transcriptomics and metabolomics approach, we studied the response of seedlings to N starvation of two different tetraploid wheat genotypes from the two main domesticated subspecies: emmer and durum wheat. We found that durum wheat exhibits broader and stronger response in comparison to emmer as seen from the expression pattern of both genes and metabolites and gene enrichment analysis.

View Article and Find Full Text PDF

Trim-Away is a recently developed technology that exploits off-the-shelf antibodies and the RING E3 ligase and cytosolic antibody receptor TRIM21 to carry out rapid protein depletion. How TRIM21 is catalytically activated upon target engagement, either during its normal immune function or when repurposed for targeted protein degradation, is unknown. Here we show that a mechanism of target-induced clustering triggers intermolecular dimerization of the RING domain to switch on the ubiquitination activity of TRIM21 and induce virus neutralization or drive Trim-Away.

View Article and Find Full Text PDF

The HIV capsid is a multifunctional protein capsule that mediates the delivery of the viral genetic material into the nucleus of the target cell. Host cell proteins bind to a number of repeating binding sites on the capsid to regulate steps in the replication cycle. Here, we develop a fluorescence fluctuation spectroscopy method using self-assembled capsid particles as the bait to screen for fluorescence-labeled capsid-binding analytes ("prey" molecules) in solution.

View Article and Find Full Text PDF

The HIV capsid self-assembles a protective conical shell that simultaneously prevents host sensing whilst permitting the import of nucleotides to drive DNA synthesis. This is accomplished through the construction of dynamic, highly charged pores at the centre of each capsid multimer. The clustering of charges required for dNTP import is strongly destabilising and it is proposed that HIV uses the metabolite IP6 to coordinate the pore during assembly.

View Article and Find Full Text PDF

From the 17th century until the arrival of hybrids in 1960s, maize landraces were cultivated in the South-West of France (SWF), a traditional region for maize cultivation. A set of landraces were collected in this area between the 1950s and 1980s and were then conserved ex situ in a germplam collection. Previous studies using molecular markers on approx.

View Article and Find Full Text PDF

The genome of SARS-CoV-2 encodes two viral proteases (NSP3/papain-like protease and NSP5/3C-like protease) that are responsible for cleaving viral polyproteins during replication. Here, we discovered new functions of the NSP3 and NSP5 proteases of SARS-CoV-2, demonstrating that they could directly cleave proteins involved in the host innate immune response. We identified 3 proteins that were specifically and selectively cleaved by NSP3 or NSP5: IRF-3, and NLRP12 and TAB1, respectively.

View Article and Find Full Text PDF

The type one interferon induced restriction factor Myxovirus resistance B (MxB) restricts HIV-1 nuclear entry evidenced by inhibition of 2-LTR but not linear forms of viral DNA. The HIV-1 capsid is the key determinant of MxB sensitivity and cofactor binding defective HIV-1 capsid mutants P90A (defective for cyclophilin A and Nup358 recruitment) and N74D (defective for CPSF6 recruitment) have reduced dependency on nuclear transport associated cofactors, altered integration targeting preferences and are not restricted by MxB expression. This has suggested that nuclear import mechanism may determine MxB sensitivity.

View Article and Find Full Text PDF