Nanoparticles (NPs) are generally believed to derive their high reactivity from the inherently large specific surface area. Here we show that this is just the trivial part of a more involved picture. Nanoparticles that carry electric charge are able to generate chemical reaction rates that are even substantially larger than those for similar molecular reactants.
View Article and Find Full Text PDFA framework is presented for understanding the reactivity of nanoparticulate reactants with ions and small molecules. Without loss of generality, the formalism is developed for the case of nanoparticles in contact with environmentally relevant metal ions. In addition to reactive sites, nanoparticles generally carry indifferent electric charge distributed over either their surface (hard particles) or volume (soft particles).
View Article and Find Full Text PDFThe dynamics of metal complexation by small humic substances (fulvic acid and aquatic humic acid, collectively denoted as “fulvic-like substance”, FS) are explored within the framework of concepts recently developed for soft nanoparticulate complexants. From a comprehensive collection of published equilibrium and dissociation rate constants for CuFS and NiFS complexes, the association rate constant, ka, is determined as a function of the degree of complexing site occupation, θ. From this large data set, it is shown for the first time that ka is independent of θ.
View Article and Find Full Text PDFThe chemodynamics of Cu(II) complexation by humic acid is interpreted in terms of recently developed theory for permeable charged nanoparticles. Two opposing electric effects are operational with respect to the overall rate of association, namely, (i) the conductive enhancement of the diffusion of Cu(2+), expressed by a coefficient f(el), which accounts for the accelerating effect of the negative electrostatic field of the humic particle on the diffusive transport of metal ions toward it, and (ii) the ionic Boltzmann equilibration with the bulk solution, expressed by a factor f(B), which quantifies the extent to which Cu(2+) ions accumulate in the negatively charged particle body. These effects are combined in the probability of outer-sphere metal-site complex formation and the covalent binding of the metal ion by the complexing site (inner-sphere complex formation) as in the classical Eigen mechanism.
View Article and Find Full Text PDFThe chemodynamics of metal complexes with nanoparticulate complexants can differ significantly from that for simple ligands. The spatial confinement of charged sites and binding sites to the nanoparticulate body impacts on the time scales of various steps in the overall complex formation process. The greater the charge carried by the nanoparticle, the longer it takes to set up the counterion distribution equilibrium with the medium.
View Article and Find Full Text PDFIn a mixture of metal ions and complexes, it is difficult to predict ecological risk without understanding the contribution of each metal species to biouptake. For microorganisms, the rate of uptake (internalization flux) has not only a major influence on the total metal flux but also on the bioavailability of the various metal species and their relative contributions to the total flux. In this paper, the microorganism is considered as a consuming interface, which interacts with the metal ion, M, via the Michaelis-Menten boundary conditions.
View Article and Find Full Text PDFA theoretical discussion is presented to describe the formation and dissociation rate constants for metal ion binding by soft nanoparticulate complexants. The well-known framework of the Eigen mechanism for metal ion complexation by simple ligands in aqueous systems is the starting point. Expressions are derived for the rate constants for the intraparticulate individual outer-sphere and inner-sphere association and dissociation steps for the limiting cases of low and high charge densities.
View Article and Find Full Text PDFHumic substances (HS) play an important role in the reactivity and transport of colloids in natural environments. In particular, the presence of fulvic acids (FA) in natural waters modifies the interactions between inorganic particles and biopolymers and makes difficult to predict their stability with regard to aggregation processes. In this study, Brownian dynamics (BD) modeling is applied to quantify the interactions between negatively charged FA and (i) a positively charged inorganic particle and (ii) a rigid neutral polysaccharide in aqueous solutions.
View Article and Find Full Text PDFEnviron Sci Technol
October 2009
Recent progress in understanding the formation/dissociation kinetics of aquatic metal complexes with complexants in different size ranges is evaluated and put in perspective, with suggestions for further studies. The elementary steps in the Eigen mechanism, i.e.
View Article and Find Full Text PDFUnderstanding the processes controlling metal biouptake in a mixture of ligands is a requirement for making predictions on dynamic risk assessment in ecotoxicology. In ligand mixtures, the metal uptake flux, due to the dissociation of non labile complexes, can be significantly enhanced by the presence of ligands forming labile complexes, even when the proportions of the latter are very small in the bulk solution. The flux enhancement results from a peculiar kinetic interplay, at the interface, between the labile and non labile species, which influences the lifetime of free metal ion and the reaction layer thickness.
View Article and Find Full Text PDFUnder specific conditions (pH, concentrations), trace metals may form, with environmental inorganic ligands, neutral complexes which, in principle, might diffuse passively through biological membranes or influence the response of (bio)analytical sensors for trace metals based on permeation liquid membrane (PLM). In this study, metal (Cu, Cd, Pb) transport through the planar PLM device was evaluated in the presence of major environmental inorganic ligands such as sulfate, carbonate and chloride under conditions where neutral complexes may be formed (up to 73% of neutral metal complex in the solution). In the presence of sulfate, comparison of predicted and experimental PLM fluxes of Cu, Pb and Cd, suggests that passive transport of neutral sulfate-metal complexes does not occur.
View Article and Find Full Text PDFUnderstanding the physical chemical behaviors of each metal species in a solution containing a mixture of ligands is a prerequisite, e.g., for studying metal bioavailability or making predictions on dynamic risk assessment in ecotoxicology.
View Article and Find Full Text PDFThe revisited reaction layer approximation (RLA) of metal flux at consuming interfaces in ligand mixtures, discussed in the previous paper (part 1 of this series) is systematically validated by comparison with the results of rigorous numerical simulations. The current paper focuses on conditions under which the total metal flux is enhanced in the ligand (and complex) mixture compared to the case where the individual fluxes of metal complexes are independent of each other. Such an effect is exhibited only in ligand mixtures and results from the kinetic interplay between the various complexes with different labilities.
View Article and Find Full Text PDFAn insight into the dynamic aspects of the accumulation process is essential for understanding bioaccumulation as well as effect studies of hydrophobic organic chemicals. This review presents an overview of kinetic studies with organisms (fish, bivalve, crustacean, insect, worm, algae, and protozoan) as well as passive samplers (solid and liquid phase microextraction, semipermeable membrane device, polymer sheet, solid-phase extraction, Chemcatcher, etc.) for the uptake of neutral nonpolar chemicals from the aqueous phase.
View Article and Find Full Text PDFMetal toxicity is not related to the total metal ion concentration, but to those of some specific Cu(II) species. The Permeation Liquid Membrane technique is based on the carrier-mediated transport of the test metal across a hydrophobic membrane and enables discrimination between various trace metal species in solution. The present work shows how the labile and inert Cu(II) complexes can be determined selectively, by varying the flow-rate of the test solution, in a flow-through cell.
View Article and Find Full Text PDFMetal flux at consuming interfaces (e.g., sensors or microorganisms) is simulated in environmental multiligand systems using a new numerical code, MHEDYN (Multispecies HEterogeneous DYNamics), based on the lattice Boltzmann method.
View Article and Find Full Text PDFMetal flux at consuming interfaces (e.g., sensors or microorganisms) is simulated in environmental multiligand systems using a new numerical code, MHEDYN (Multispecies HEterogeneous DYNamics), based on the lattice Boltzmann method.
View Article and Find Full Text PDFIt is well known that the electrostatic repulsions between charges on neighboring sites decrease the effective charge at the surface of a charged nanoparticle (NP). However, the situation is more complex close to a dielectric discontinuity, since charged sites are interacting not only with their neighbors but also with their own image charges and the image charges of all neighbors. Titrating site positions, solution ionic concentration, dielectric discontinuity effects, and surface charge variations with pH are investigated here using a grand canonical Monte Carlo method.
View Article and Find Full Text PDFThe computation of metal flux in aquatic systems at consuming surfaces like organism membranes must consider the diffusion processes of metal ions, ligands, and complex species, as well as the kinetic and thermodynamic aspects of their chemical interactions. Many natural ligands, however, have complicated properties (formation of successive complexes for simple ligands, polyelectrolytic properties and chemical heterogeneity for macromolecular ligands, large size distribution and fractal structure for suspended aggregates). These properties should be properly modeled to get the correct values of the chemical rate constants and diffusion coefficients required for flux computations.
View Article and Find Full Text PDFIn the computation of metal flux in aquatic systems, at consuming surfaces like organism membranes, diffusion processes of metal ions, ligands, and complex species, as well as the kinetic and thermodynamic aspects of their chemical interactions, must be considered. The properties of many natural ligands, however, are complicated (formation of successive complexes for simple ligands, polyelectrolytic properties and chemical heterogeneity for macromolecular ligands, large size distribution and fractal structure for suspended aggregates). These properties should be properly modeled to get the correct values of the chemical rate constants and diffusion coefficients required for flux computations.
View Article and Find Full Text PDFThe permeation liquid membrane (PLM) technique was used to evaluate cadmium speciation in media resembling natural freshwaters. A planar sheet PLM system was characterized by measuring Cd fluxes in the absence and presence of complexing agents such as citrate, malonate, nitrilotriacetate and the Suwannee River standard humic acid. Comparison with theoretical speciation calculations and the results of a Cd2+ selective electrode, showed that free Cd was correctly measured using the planar sheet PLM within the studied concentration range, i.
View Article and Find Full Text PDFIn complicated environmental or biological systems, the fluxes of chemical species at a consuming interface, like an organism or an analytical sensor, involve many coupled chemical and diffusion processes. Computation of such fluxes thus becomes difficult. The present paper describes an approximate approach, based on the so-called reaction layer concept, which enables one to obtain a simple analytical solution for the steady-state flux of a metal ion at a consuming interface, in the presence of many ligands, which are in excess with respect to the test metal ion.
View Article and Find Full Text PDFThe study of the role of dynamic metal speciation in lipophilic membrane permeability in aqueous solution requires accurate interpretation of experimental data. To meet this goal, a general theory is derived for describing 1:1 metal complex flux, under steady-state and ligand excess conditions, through a permeation liquid membrane (PLM). The theory is applicable to fluxes through any lipophilic membrane.
View Article and Find Full Text PDFThe impact of ligand protonation on metal speciation dynamics is quantitatively described. Starting from the usual situation for metal complex formation reactions in aqueous systems, i.e.
View Article and Find Full Text PDF