Publications by authors named "Jacques Breton"

In French Guiana, a French overseas territory in South America facing a fourth wave of COVID-19, vaccination coverage is very low, both in the population and among health care workers (HCWs). Vaccine hesitancy concerned 35.7% of the latter in early 2021.

View Article and Find Full Text PDF

In the context of the global COVID-19 pandemic and the expansion of the more transmissible 20J/501Y.V3 (Gamma) variant of concern (VOC), mRNA vaccines have been made available in French Guiana, an overseas French territory in South America, from mid-January 2021. This study aimed to estimate the willingness to be vaccinated and the socio-demographic and motivational correlates among Health Care Workers (HCWs) in French Guiana.

View Article and Find Full Text PDF

Peroxiredoxins (Prxs) are a family of thiol peroxidases that participate in hydroperoxide detoxification and regulates H2O2 signaling. In mammals, the four typical 2-Cys Prxs (Prxs 1, 2, 3 and 4) are known to regulate H2O2-mediated intracellular signaling. The 2 catalytic cysteines of 2-Cys Prxs, the so-called peroxidatic and resolving cysteines, are regulatory switches that are prone to react with redox signaling molecules.

View Article and Find Full Text PDF

Peroxiredoxins (Prx's) are a family of peroxidases that maintain thiol homeostasis by catalyzing the reduction of organic hydroperoxides, H₂O₂, and peroxynitrite. Under conditions of oxidative stress, eukaryotic Prx's can be inactivated by the substrate-dependent oxidation of the catalytic cysteine to sulfinic acid, which may regulate the intracellular messenger function of H₂O₂. A small redox protein, sulfiredoxin (Srx), conserved only in eukaryotes, has been shown to reduce sulfinylated 2-Cys Prx's, adding to the complexity of the H₂O₂ signaling network.

View Article and Find Full Text PDF

Energy and electron transfer in a tyrosine M210 to tryptophan (YM210W) mutant of the Rhodobacter sphaeroides reaction center (RC) were investigated through time-resolved visible pump/mid-infrared (mid-IR) probe spectroscopy at room temperature, with the aim to further characterize the primary charge separated states in the RC. This mutant is known to display slow and multi-exponential charge separation, and was used in earlier work to prove the existence of an alternative route for charge separation starting from the accessory bacteriochlorophyll in the active branch, B(L). The mutant RCs were excited at 860 nm (direct excitation of the primary donor (P) BChls (P(L)/P(M))), 600 nm (unselective excitation), 805 nm (direct excitation of both accessory bacteriochlorophyll cofactors B(L) and B(M)) and 795 nm (direct excitation of B(L)).

View Article and Find Full Text PDF

Peroxiredoxins (PRXs) are thiol peroxidases associated with many cellular functions including proliferation, cell cycle, apoptosis, and differentiation. There is also increasing evidence that these ubiquitous antioxidant enzymes control H(2)O(2) signaling in eukaryotes. Here, we provide evidence that the LPS/TLR4 and the Th1 cytokine IFN-gamma pathways induce expression of PRX5, a potent peroxide and peroxynitrite reductase, in primary macrophages.

View Article and Find Full Text PDF

Energy and electron transfer in a Leu M214 to His (LM214H) mutant of the Rhodobacter sphaeroides reaction center (RC) were investigated by applying time-resolved visible pump/midinfrared probe spectroscopy at room temperature. This mutant replacement of the Leu at position M214 resulted in the incorporation of a bacteriochlorophyll (BChl) in place of the native bacteriopheophytin in the L-branch of cofactors (denoted betaL). Purified LM214H RCs were excited at 600 nm (unselective excitation), at 800 nm (direct excitation of the monomeric BChl cofactors B(L) and B(M)), and at 860 nm (direct excitation of the primary donor (P) BChl pair (P(L)/P(M))).

View Article and Find Full Text PDF

Peroxiredoxins participate in the antioxidant response by reducing H(2)O(2), organic peroxides and peroxynitrite. Peroxiredoxins have a conserved NH(2)-terminal cysteine residue that is oxidized to sulfenic acid during catalysis of peroxide reduction. In eukaryotes, the sulfenic acid can be further oxidized to a sulfinic acid.

View Article and Find Full Text PDF

FTIR difference spectroscopy provides a unique approach to study directly protonation/deprotonation events of carboxylic acids involved in the photochemical cycle of membrane proteins, such as the bacterial photosynthetic reaction center (RC). In this work, we review the data obtained by light-induced FTIR difference spectroscopy on the first electron transfer to the secondary quinone Q(B) in native RCs and a series of mutant RCs. We first examine the approach of isotope-edited FTIR spectroscopy to investigate the binding site of Q(B).

View Article and Find Full Text PDF

Time-resolved visible pump/mid-infrared (mid-IR) probe spectroscopy in the region between 1600 and 1800 cm(-1) was used to investigate electron transfer, radical pair relaxation, and protein relaxation at room temperature in the Rhodobacter sphaeroides reaction center (RC). Wild-type RCs both with and without the quinone electron acceptor Q(A), were excited at 600 nm (nonselective excitation), 800 nm (direct excitation of the monomeric bacteriochlorophyll (BChl) cofactors), and 860 nm (direct excitation of the dimer of primary donor (P) BChls (P(L)/P(M))). The region between 1600 and 1800 cm(-1) encompasses absorption changes associated with carbonyl (C=O) stretch vibrational modes of the cofactors and protein.

View Article and Find Full Text PDF

It is now quite well accepted that charge separation in PS2 reaction centers starts predominantly from the accessory chlorophyll B(A) and not from the special pair P(680). To identify spectral signatures of B(A,) and to further clarify the process of primary charge separation, we compared the femtosecond-infrared pump-probe spectra of the wild-type (WT) PS2 core complex from the cyanobacterium Synechocystis sp. PCC 6803 with those of two mutants in which the histidine residue axially coordinated to P(B) (D2-His(197)) has been changed to Ala or Gln.

View Article and Find Full Text PDF

Intestinal microsporidiosis due to Enterocytozoon bieneusi is a leading cause of chronic diarrhea in severely immunocompromised human immunodeficiency virus (HIV)-positive patients. It may be a public health problem in Africa due to the magnitude of the HIV pandemic and to poor sanitary conditions. We designed two prevalence studies of E.

View Article and Find Full Text PDF

In native reaction centers (RCs) from photosynthetic purple bacteria the primary quinone (QA) and the secondary quinone (QB) are interconnected via a specific His-Fe-His bridge. In Rhodobacter sphaeroides RCs the C4=O carbonyl of QA forms a very strong hydrogen bond with the protonated Npi of His M219, and the Ntau of this residue is in turn coordinated to the non-heme iron atom. The second carbonyl of QA is engaged in a much weaker hydrogen bond with the backbone N-H of Ala M260.

View Article and Find Full Text PDF

In the reaction center (RC) of the photosynthetic bacterium Rhodobacter sphaeroides, two ubiquinone molecules, QA and QB, play a pivotal role in the conversion of light energy into chemical free energy by coupling electron transfer to proton uptake. In native RCs, the transfer of an electron from QA to QB takes place in the time range of 5-200 micros. On the basis of time-resolved FTIR step-scan measurements in native RCs, a new and unconventional mechanism has been proposed in which QB- formation precedes QA- oxidation [Remy, A.

View Article and Find Full Text PDF

In the photosynthetic reaction center (RC) from the purple bacterium Rhodobacter sphaeroides, proton-coupled electron-transfer reactions occur at the secondary quinone (QB) site. Involved in the proton uptake steps are carboxylic acids, which have characteristic infrared vibrations in the 1770-1700 cm-1 spectral range that are sensitive to 1H/2H isotopic exchange. With respect to the native RC, a novel protonation pattern for carboxylic acids upon QB photoreduction has been identified in the Glu-L212 --> Asp/Asp-L213 --> Glu mutant RC using light-induced FTIR difference spectroscopy (Nabedryk, E.

View Article and Find Full Text PDF

In the photosynthetic reaction center (RC) from the purple bacterium Rhodobacter sphaeroides, proton-coupled electron-transfer reactions occur at the secondary quinone (Q(B)) site. Several nearby residues are important for both binding and redox chemistry involved in the light-induced conversion from Q(B) to quinol Q(B)H(2). Ser-L223 is one of the functionally important residues located near Q(B).

View Article and Find Full Text PDF

The vibrational properties of the primary donor P(840) in the reaction center (RC) of the green sulfur bacterium Chlorobium tepidum and its interactions with the surrounding protein environment have been investigated by Fourier transform infrared (FTIR) difference spectroscopy at cryogenic temperatures. By using the step-scan technique with a time resolution of 5 mus on RCs that had been depleted of the iron-sulfur electron acceptors, the formation and decay of the triplet state (3)P(840) have been followed in infrared for the first time. The (3)P(840)/P(840) FTIR difference spectrum is compared to the P(840) (+)/P(840) FTIR difference spectrum measured under identical conditions on untreated RCs and recorded with the same step-scan set-up.

View Article and Find Full Text PDF

All of the membrane-embedded cofactors of the purple bacterial reaction centre have well-defined functional or structural roles, with the exception of the bacteriopheophytin (H(B)) located approximately half-way across the membrane on the so-called inactive- or B-branch of cofactors. Sequence alignments indicate that this bacteriochlorin cofactor is a conserved feature of purple bacterial reaction centres, and a pheophytin is also found at this position in the Photosystem-II reaction centre. Possible structural or functional consequences of replacing the H(B) bacteriopheophytin by bacteriochlorophyll were investigated in the Rhodobacter sphaeroides reaction centre through mutagenesis of residue Leu L185 to His (LL185H).

View Article and Find Full Text PDF

Despite the apparent similarity between the plant Photosystem II reaction center (RC) and its purple bacterial counterpart, we show in this work that the mechanism of charge separation is very different for the two photosynthetic RCs. By using femtosecond visible-pump-mid-infrared probe spectroscopy in the region of the chlorophyll ester and keto modes, between 1,775 and 1,585 cm(-1), with 150-fs time resolution, we show that the reduction of pheophytin occurs on a 0.6- to 0.

View Article and Find Full Text PDF

P700, the primary electron donor of photosystem I, is an asymmetric dimer made of one molecule of chlorophyll a' (P(A)) and one of chlorophyll a (P(B)) that are bound to the homologous PsaA and PsaB polypeptides. While the carbonyl groups of P(A) are involved in hydrogen-bonding interactions with several surrounding amino acid side chains and a water molecule, P(B) does not engage hydrogen bonds with the protein. Notably, the residue Thr A739 is donating a strong hydrogen bond to the 9-keto C=O group of P(A) and the homologous residue Tyr B718 is free from interaction with P(B).

View Article and Find Full Text PDF

Photosystem I of higher plants is characterized by red-shifted spectral forms deriving from chlorophyll chromophores. Each of the four Lhca1 to -4 subunits exhibits a specific fluorescence emission spectrum, peaking at 688, 701, 725, and 733 nm, respectively. Recent analysis revealed the role of chlorophyll-chlorophyll interactions of the red forms in Lhca3 and Lhca4, whereas the basis for the fluorescence emission at 701 nm in Lhca2 is not yet clear.

View Article and Find Full Text PDF

P700, the primary electron donor of photosystem I is an asymmetric dimer made of one molecule of chlorophyll a' (P(A)) and one of chlorophyll a (P(B)). While the carbonyl groups of P(A) are involved in hydrogen-bonding interactions with several surrounding amino acid side chains and a water molecule, P(B) does not engage in hydrogen bonding with the protein. Light-induced FTIR difference spectroscopy of the photooxidation of P700 has been combined with site-directed mutagenesis in Synechocystis sp.

View Article and Find Full Text PDF

In the reaction center from the photosynthetic purple bacterium Rhodobacter sphaeroides, light energy is rapidly converted to chemical energy through coupled electron-proton transfer to a buried quinone molecule Q(B). Involved in the proton uptake steps are carboxylic acids, which have characteristic infrared vibrations that are observable using light-induced Fourier transform infrared (FTIR) difference spectroscopy. Upon formation, Q(B)(-) induces protonation of Glu-L212, located within 5 A of Q(B), resulting in a IR signal at 1728 cm(-1).

View Article and Find Full Text PDF

In Rhodobacter sphaeroides reaction centers (RCs) containing the mutation Ala M260 to Trp (AM260W), transmembrane electron transfer along the full-length of the A-branch of cofactors is prevented by the loss of the Q(A) ubiquinone, but it is possible to generate the radical pair P(+)H(A)(-) by A-branch electron transfer or the radical pair P(+)Q(B)(-) by B-branch electron transfer. In the present study, FTIR spectroscopy was used to provide direct evidence for the complete absence of the Q(A) ubiquinone in mutant RCs with the AM260W mutation. Light-induced FTIR difference spectroscopy of isolated RCs was also used to probe the neutral Q(B) and the semiquinone Q(B)(-) states in two B-branch active mutants, a double AM260W-LM214H mutant, denoted WH, and a quadruple mutant, denoted WAAH, in which the AM260W, LM214H, and EL212A-DL213A mutations were combined.

View Article and Find Full Text PDF

In Rhodobacter sphaeroides reaction centers containing the mutation Ala M260 to Trp (AM260W), transmembrane electron transfer along the A-branch of cofactors is prevented by the loss of the QA ubiquinone. Reaction centers that contain this AM260W mutation are proposed to photoaccumulate the P(+)QB- radical pair following transmembrane electron transfer along the B-branch of cofactors (Wakeham, M. C.

View Article and Find Full Text PDF