Some cancers have a poor prognosis and often lead to local recurrence because they are resistant to available treatments, e.g., glioblastoma.
View Article and Find Full Text PDFCrit Rev Oncol Hematol
December 2024
Background: We conducted a systematic review to evaluate outcomes and toxicities associated with proton therapy in the treatment of adult-type diffuse glioma.
Methods: Following PRISMA guidelines, we searched PubMed for both prospective and retrospective studies on proton therapy for adult diffuse gliomas, including IDH-mutated gliomas WHO grade 2-3 and glioblastomas. Survival and toxicity outcomes were reported separately for these glioma types.
Synchrotron Microbeam Radiation Therapy (MRT) has repeatedly proven its superiority compared with conventional radiotherapy for glioma control in preclinical research. The clinical transfer phase of MRT has recently gained momentum; seven dogs with suspected glioma were treated under clinical conditions to determine the feasibility and safety of MRT. We administered a single fraction of 3D-conformal, image-guided MRT.
View Article and Find Full Text PDFObjective: This multicenter study aimed to retrospectively evaluate the impact of high boost simultaneous integrated boost (SIB) to pathologic lymph nodes compared to Sequential boost (Seq) in patients with locally advanced cervical cancer (LACC).
Materials And Methods: 97 patients with pelvic and/or para-aortic (PAo) node-positive LACC treated by definitive chemoradiation were included. Two groups were analyzed: Sequential boost group and simultaneous integrated boost (SIB) group.
Int J Radiat Oncol Biol Phys
September 2024
Purpose: Novel radiation therapy approaches have increased the therapeutic efficacy for malignant brain tumors over the past decades, but the balance between therapeutic gain and radiotoxicity remains a medical hardship. Synchrotron microbeam radiation therapy, an innovative technique, deposes extremely high (peak) doses in micron-wide, parallel microbeam paths, whereas the diffusing interbeam (valley) doses lie in the range of conventional radiation therapy doses. In this study, we evaluated normal tissue toxicity of whole-brain microbeam irradiation (MBI) versus that of a conventional hospital broad beam (hBB).
View Article and Find Full Text PDFSurvival in unresectable locally advanced stage non-small cell lung cancer (NSCLC) patients remains poor despite chemoradiotherapy. Recently, adjuvant immunotherapy improved survival for these patients but we are still far from curing most of the patients with only a 57% survival remaining at 3 years. This poor survival is due to the resistance to chemoradiotherapy, local relapses, and distant relapses.
View Article and Find Full Text PDFBackground: Some cancers such as sarcomas (bone and soft tissue sarcomas) and adenoid cystic carcinomas are considered as radioresistant to low linear energy transfer radiation (including photons and protons) and may therefore beneficiate from a carbon ion therapy. Despite encouraging results obtained in phase I/II trials compared to historical data with photons, the spread of carbon ions has been limited mainly because of the absence of randomized medical data. The French health authorities stressed the importance of having randomized data for carbon ion therapy.
View Article and Find Full Text PDFPurpose: The high potential of microbeam radiation therapy (MRT) in improving tumor control while reducing side effects has been shown by numerous preclinical studies. MRT offers a widened therapeutic window by using the periodical spatial fractionation of synchrotron generated x-rays into an array of intense parallel microbeams. MRT now enters a clinical transfer phase.
View Article and Find Full Text PDFNeurofibromatosis type 1 (NF1) is a disease characterized by high occurrence of benign and malignant brain tumours and caused by mutations of the neurofibromin protein. While there is an increasing evidence that NF1 is associated with radiosensitivity and radiosusceptibility, few studies have dealt with the molecular and cellular radiation response of cells from individuals with NF1. Here, we examined the ATM-dependent signalling and repair pathways of the DNA double-strand breaks (DSB), the key-damage induced by ionizing radiation, in skin fibroblast cell lines from 43 individuals with NF1.
View Article and Find Full Text PDFPurpose: This retrospective study aims to assess factors associated with the occurrence of toxicity after brachytherapy (BT), as boost after external beam radiotherapy (EBRT) for treatment of invasive cervix carcinoma.
Methods And Materials: All consecutive patients diagnosed with cervical carcinoma, and treated with concurrent radiochemotherapy from August 2017 to January 2020 were retrospectively included. An isodose conformation index (ICI) was developed to assess the percentage of the prescription isodose contained within the intermediate risk clinical target volume (IR-CTV).
Background: Imaging, in radiotherapy, has become a routine tool for repositioning of the target volume at each session. The repositioning precision, currently infracentimetric, evolves along with the irradiation techniques. This retrospective study aimed to identify practices and doses resulting from the use of high energy planar imaging (portal imaging) in daily practice.
View Article and Find Full Text PDFPurpose: Proton therapy (PT) can be a good option to achieve tumor control while reducing the probability of radiation induced toxicities compared to X-ray-based radiotherapy. However, there are still uncertainties about the effects of PT on the organs in direct contact with the irradiated volume. The aim of this prospective series was to report 6-month follow-up of clinical and functional optic neuropathy rates of patients treated by proton therapy using a standardized comprehensive optic examination.
View Article and Find Full Text PDFConsidering intracranial tumours, only few indications of protontherapy, such as chordoma, chondrosarcoma or uveal melanoma, are uniformly approved in the world. Other indications, excluding paediatric pathologies, are still debated. The aim of this article is to describe the rationale for the use of protonbeam irradiation for meningioma, pituitary adenoma, craniopharyngioma, paraganglioma, glioma, and schwannoma, and to inform the radiation oncologists if prospective studies or randomized studies are opened for inclusions.
View Article and Find Full Text PDFBackground And Purpose: Brain metastasis impacts greatly on patients' quality of life and survival. The phase I NANO-RAD trial assessed the safety and maximum tolerated dose of systemic administration of a novel gadolinium-based nanoparticle, AGuIX, in combination with whole brain radiotherapy in patients with multiple brain metastases not suitable for stereotactic radiotherapy.
Materials And Methods: Patients with measurable brain metastases received escalating doses of AGuIX nanoparticles (15, 30, 50, 75, or 100 mg/kg intravenously) on the day of initiation of WBRT (30 Gy in 10 fractions) in 5 cohorts of 3 patients each.
Delivery of high-radiation doses to brain tumors via multiple arrays of synchrotron X-ray microbeams permits huge therapeutic advantages. Brain tumor (9LGS)-bearing and normal rats were irradiated using a conventional, homogeneous Broad Beam (BB), or Microbeam Radiation Therapy (MRT), then studied by behavioral tests, MRI, and histopathology. A valley dose of 10 Gy deposited between microbeams, delivered by a single port, improved tumor control and median survival time of tumor-bearing rats better than a BB isodose.
View Article and Find Full Text PDFBackground: Rate of abdominoperineal resection (APR) varies from countries and surgeons. Surgical impact of preoperative treatment for ultra-low rectal carcinoma (ULRC) initially indicated for APR is debated. We report the 10-year oncological results from a prospective controlled trial (GRECCAR 1) which evaluate the sphincter saving surgery (SSR).
View Article and Find Full Text PDFThe use of radiosensitizing nanoparticles with both imaging and therapeutic properties on the same nano-object is regarded as a major and promising approach to improve the effectiveness of radiotherapy. Here, we report the MRI findings of a phase 1 clinical trial with a single intravenous administration of Gd-based AGuIX nanoparticles, conducted in 15 patients with four types of brain metastases (melanoma, lung, colon, and breast). The nanoparticles were found to accumulate and to increase image contrast in all types of brain metastases with MRI enhancements equivalent to that of a clinically used contrast agent.
View Article and Find Full Text PDFBackground: The purpose of this review is to summarize our own experimental studies carried out over a 13-year period of time using the F98 rat glioma as model for high grade gliomas. We evaluated a binary chemo-radiotherapeutic modality that combines either cisplatin (CDDP) or carboplatin, administered intracerebrally (i.c.
View Article and Find Full Text PDFPurpose: Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly collimated synchrotron beam into arrays of parallel microbeams depositing several hundred grays. It appears relevant to combine MRT with a conventional treatment course, preparing a treatment scheme for future patients in clinical trials. The efficiency of MRT delivered after several broad-beam (BB) fractions to palliate F98 brain tumors in rats in comparison with BB fractions alone was evaluated in this study.
View Article and Find Full Text PDFThe resistance of cancer cells to radiotherapy is a major issue in the curative treatment of cancer patients. This resistance can be intrinsic or acquired after irradiation and has various definitions, depending on the endpoint that is chosen in assessing the response to radiation. This phenomenon might be strengthened by the radiosensitivity of surrounding healthy tissues.
View Article and Find Full Text PDFThe functional roles of the Caudate nucleus (Cd) are well known. Selective Cd lesions can be found in neurological disorders. However, little is known about the dynamics of the behavioral changes during progressive Cd ablation.
View Article and Find Full Text PDFMicrobeam radiation therapy (MRT) uses synchrotron arrays of X-ray microbeams to take advantage of the spatial fractionation effect for normal tissue sparing. In this study, radiochromic film dosimetry was performed for a treatment where MRT is introduced as a dose boost in a hypofractionated stereotactic radiotherapy (SRT) scheme. The isocenter dose was measured using an ionization chamber and two dimensional dose distributions were determined using radiochromic films.
View Article and Find Full Text PDFClin Colorectal Cancer
September 2019
Background: Recurrence and distant metastases remain a significant issue in locally advanced rectal cancer (LARC). Several multimodal strategies are assessed in clinical trials.
Patients And Methods: Patients with mid/low magnetic resonance imaging-defined high-risk LARC were randomized to arm A (12-week bevacizumab + FOLFOX-4 then bevacizumab-5-fluorouracil [5-FU]-radiotherapy [RT] before total mesorectal excision [TME]) or arm B (bevacizumab-5-FU-RT then TME).
This paper reviews the current state of the art of an emerging form of radiosurgery dedicated to brain tumour treatment and which operates at very high dose rate (kGy·s). Microbeam Radiation Therapy uses synchrotron-generated X-rays which triggered normal tissue sparing partially mediated by FLASH effect.
View Article and Find Full Text PDFIntroduction: Occurrence of multiple brain metastases is a critical evolution of many cancers with significant neurological and overall survival consequences, despite new targeted therapy and standard whole brain radiotherapy (WBRT). A gadolinium-based nanoparticle, AGuIX, has recently demonstrated its effectiveness as theranostic and radiosensitiser agent in preclinical studies. The favourable toxicity profile in animals and its administration as a simple intravenous injection has motivated its use in patients with this first in human study.
View Article and Find Full Text PDF