Int J Environ Res Public Health
November 2023
Malaria continues to be a major public health concern with a substantial burden in Africa. Even though it has been widely demonstrated that malaria transmission is climate-driven, there have been very few studies assessing the relationship between climate variables and malaria transmission in Côte d'Ivoire. We used the VECTRI model to predict malaria transmission in southern Côte d'Ivoire.
View Article and Find Full Text PDFTrop Med Infect Dis
November 2022
Malaria is a constant reminder of the climate change impacts on health. Many studies have investigated the influence of climatic parameters on aspects of malaria transmission. Climate conditions can modulate malaria transmission through increased temperature, which reduces the duration of the parasite's reproductive cycle inside the mosquito.
View Article and Find Full Text PDFThe Sahelian zone of Senegal experienced heat waves in the previous decades, such as 2013, 2016 and 2018 that were characterised by temperatures exceeding 45°C for up to 3 successive days. The health impacts of these heat waves are not yet analysed in Senegal although their negative effects have been shown in many countries. This study analyses the health impacts of observed extreme temperatures in the Sahelian zone of the country, focusing on morbidity and mortality by combining data from station observation, climate model projections, and household survey to investigate heat wave detection, occurrence of climate-sensitive diseases and risk factors for exposure.
View Article and Find Full Text PDFMalaria is a major public health problem in West Africa. Previous studies have shown that climate variability significantly affects malaria transmission. The lack of continuous observed weather station data and the absence of surveillance data for malaria over long periods have led to the use of reanalysis data to drive malaria models.
View Article and Find Full Text PDFMalaria is endemic in Senegal. The national malaria control strategy focuses on achieving universal coverage for major interventions, with a goal of reaching preelimination status by 2018. Senegal began distribution of insecticide-treated nets (ITNs) and introduced artemisinin-based combination therapy in 2006, then introduced rapid diagnostic tests in 2007.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2017
The analysis of the spatial and temporal variability of climate parameters is crucial to study the impact of climate-sensitive vector-borne diseases such as malaria. The use of malaria models is an alternative way of producing potential malaria historical data for Senegal due to the lack of reliable observations for malaria outbreaks over a long time period. Consequently, here we use the Liverpool Malaria Model (LMM), driven by different climatic datasets, in order to study and validate simulated malaria parameters over Senegal.
View Article and Find Full Text PDFBackground: Climatic and environmental variables were used successfully by using models to predict Rift Valley fever (RVF) virus outbreaks in East Africa. However, these models are not replicable in the West African context due to a likely difference of the dynamic of the virus emergence. For these reasons specific models mainly oriented to the risk mapping have been developed.
View Article and Find Full Text PDFBackground: The influence of environmental and climatic factors on malaria vector bionomics and transmission is an important topic in the context of climatic change particularly at macro-geographical level. Sahelian areas could be particularly affected due to heterogeneous features including high inter-annual variability in rainfall and others associated parameters. Therefore, baseline information on the impact of environmental and climatic factors on malaria transmission at micro-geographical level is required for vector risk management and implementation of control strategies.
View Article and Find Full Text PDFRift Valley fever is an emerging mosquito-borne disease that represents a threat to human and animal health. The exophilic and exophagic behavior of the two main vector in West Africa (Aedes vexans and Culex poicilipes), adverse events post-vaccination, and lack of treatment, render ineffective the disease control. Therefore it is essential to develop an information system that facilitates decision-making and the implementation of adaptation strategies.
View Article and Find Full Text PDFThe Rift Valley fever (RVF), which first appeared in Kenya in 1912, is an anthropozoonosis widespread in tropical areas. In Senegal, it is particularly felt in the Ferlo area where a strong presence of ponds shared by humans, cattle and vectors is noted. As part of the studies carried out on the environmental factors which favour its start and propagation, the focus of this paper is put on the decision making process to evaluate the impacts, the interactions and to make RVF monitoring easier.
View Article and Find Full Text PDFThe genetic diversity of native cowpea rhizobia originating from 60 sites across four eco-geographic zones in Senegal was studied. More than 300 cowpea nodules were analyzed by PCR-RFLP of the 16S-23S rDNA InterGenic Spacer region (IGS). Alignments of IGS sequences indicated that all genotypes were grouping within the Bradyrhizobium genus.
View Article and Find Full Text PDFThe multi-disciplinary French project "Adaptation à la Fiévre de la Vallée du Rift" (AdaptFVR) has concluded a 10-year constructive interaction between many scientists/partners involved with the Rift Valley fever (RVF) dynamics in Senegal. The three targeted objectives reached were (i) to produce--in near real-time--validated risk maps for parked livestock exposed to RVF mosquitoes/vectors bites; (ii) to assess the impacts on RVF vectors from climate variability at different time-scales including climate change; and (iii) to isolate processes improving local livestock management and animal health. Based on these results, concrete, pro-active adaptive actions were taken on site, which led to the establishment of a RVF early warning system (RVFews).
View Article and Find Full Text PDFBackground: The study of vector feeding behaviour is an important step in the understanding of the epidemiology of vector borne diseases. The main objective of this work was to study the spatio-temporal host preferences and blood-feeding patterns of malaria vectors in a pastoral area of Senegal where cattle breeding is the main human activity.
Methods: Malaria vectors were collected indoors by pyrethrum spray catch in 16 villages belonging to 4 different landscape classes (wooded savanna, shrubby savanna, bare soils and steppe).
The aim of this work, undertaken in the framework of QWeCI (Quantifying Weather and Climate Impacts on health in the developing countries) project, is to study how climate variability could influence malaria seasonal incidence. It will also assess the evolution of vector-borne diseases such as malaria by simulation analysis of climate models according to various climate scenarios for the next years. Climate variability seems to be determinant for the risk of malaria development (Freeman and Bradley, 1996 [1], Lindsay and Birley, 1996 [2], Kuhn et al.
View Article and Find Full Text PDFThis paper presents an analysis of the interaction between the various variables associated with Rift Valley fever (RVF) such as the mosquito vector, available hosts and rainfall distribution. To that end, the varying zones potentially occupied by mosquitoes (ZPOM), rainfall events and pond dynamics, and the associated exposure of hosts to the RVF virus by Aedes vexans, were analyzed in the Barkedji area of the Ferlo, Senegal, during the 2003 rainy season. Ponds were identified by remote sensing using a high-resolution SPOT-5 satellite image.
View Article and Find Full Text PDFA necessary condition for Rift Valley fever (RVF) emergence is the presence of Aedes (Aedimorphus) vexans and Culex (Culex) poicilipes mosquitoes carrying the arbovirus and responsible for the infection. This paper presents a detailed mapping in the Sahelian region of Senegal of zones potentially occupied by these mosquitoes (ZPOMs) whose population density is directly linked to ecozones in the vicinity of small ponds. The vectors habitats and breeding sites have been characterized through an integrated approach combining remote sensing technology, geographical information systems, geographical positioning systems and field observations for proper geo-referencing.
View Article and Find Full Text PDFThe importance of rainfall for the development of Aedes vexans arabiensis populations, one of the potential vectors of Rift Valley Fever in West Africa, was demonstrated in a two-year follow-up study conducted in the Ferlo region of Senegal. In 2003, the rainy season began with heavy rains and, as a result, temporary ponds, the breeding places for mosquitoes, were flooded at their maximum level immediately. In such conditions, Aedes vexans arabiensis populations are abundant at the very beginning of the season, when the majority of eggs in quiescence are flooded.
View Article and Find Full Text PDF