Background: It has been shown in experimental and theoretical work that covalently modified signaling cascades naturally exhibit bidirectional signal propagation via a phenomenon known as retroactivity. An important consequence of retroactivity, which arises due to enzyme sequestration in covalently modified signaling cascades, is that a downstream perturbation can produce a response in a component upstream of the perturbation without the need for explicit feedback connections. Retroactivity may, therefore, play an important role in the cellular response to a targeted therapy.
View Article and Find Full Text PDFCycles involving covalent modification of proteins are key components of the intracellular signaling machinery. Each cycle is comprised of two interconvertable forms of a particular protein. A classic signaling pathway is structured by a chain or cascade of basic cycle units in such a way that the activated protein in one cycle promotes the activation of the next protein in the chain, and so on.
View Article and Find Full Text PDFBuilding up from experimental knowledge of the regulatory network of the pel genes in the bacteria E. chrysanthemi, we propose for the first time a qualitative modeling of the infectious transition of this bacteria when it is hosted in a plant. We show that this infectious transition can be understood as the excitable dynamics of a metabolico-genetic network.
View Article and Find Full Text PDF