Publications by authors named "Jacquemond V"

The potential pathogenic role of disturbed Ca2+ homeostasis in Duchenne muscular dystrophy (DMD) remains a complex, unsettled issue. We used muscle fibers isolated from 3-mo-old DMDmdx rats to further investigate the case. Most DMDmdx fibers exhibited no sign of trophic or morphology distinction as compared with WT fibers and mitochondria and t-tubule membrane networks also showed no stringent discrepancy.

View Article and Find Full Text PDF

Background: We tested whether enhancing the capacity for calcium/calmodulin-dependent protein kinase type II (CaMKII) signaling would delay fatigue of excitation-induced calcium release and improve contractile characteristics of skeletal muscle during fatiguing exercise.

Methods: Fast and slow type muscle, gastrocnemius medialis (GM) and soleus (SOL), of rats and mouse interosseus (IO) muscle fibers, were transfected with pcDNA3-based plasmids for rat α and β CaMKII or empty controls. Levels of CaMKII, its T287-phosphorylation (pT287-CaMKII), and phosphorylation of components of calcium release and re-uptake, ryanodine receptor 1 (pS2843-RyR1) and phospholamban (pT17-PLN), were quantified biochemically.

View Article and Find Full Text PDF

TRAAK channels are mechano-gated two-pore-domain K channels. Up to now, activity of these channels has been reported in neurons but not in skeletal muscle, yet an archetype of tissue challenged by mechanical stress. Using patch clamp methods on isolated skeletal muscle fibers from adult zebrafish, we show here that single channels sharing properties of TRAAK channels, i.

View Article and Find Full Text PDF

Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health.

View Article and Find Full Text PDF

Tight control of skeletal muscle contractile activation is secured by the excitation-contraction (EC) coupling protein complex, a molecular machinery allowing the plasma membrane voltage to control the activity of the ryanodine receptor Ca2+ release channel in the sarcoplasmic reticulum (SR) membrane. This machinery has been shown to be intimately linked to the plasma membrane protein pannexin-1 (Panx1). We investigated whether the prescription drug probenecid, a widely used Panx1 blocker, affects Ca2+ signaling, EC coupling, and muscle force.

View Article and Find Full Text PDF
Article Synopsis
  • Rippling muscle disease (RMD) is marked by muscle stiffness and rippling, often linked to hereditary gene variations or autoimmune conditions like myasthenia gravis and thymoma.
  • A recent case study identified MURC/Cavin-4 autoantibodies in a patient with paraneoplastic iRMD who was negative for AchR antibodies and had thymoma, suggesting a specific autoimmune response.
  • Tumor removal and immunotherapy significantly reduced MURC/Cavin-4 autoantibody levels, leading to the disappearance of muscle symptoms and patient remission, indicating these autoantibodies may drive the disease in thymoma cases.
View Article and Find Full Text PDF

In mammalian skeletal muscle, the propagation of surface membrane depolarization into the interior of the muscle fibre along the transverse (T) tubular network is essential for the synchronized release of calcium from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) in response to the conformational change in the voltage-sensor dihydropyridine receptors. Deficiency in 3-phosphoinositide phosphatase myotubularin (MTM1) has been reported to disrupt T-tubules, resulting in impaired SR calcium release. Here confocal calcium transients recorded in muscle fibres of MTM1-deficient mice were compared with the results from a model where propagation of the depolarization along the T-tubules was modelled mathematically with disruptions in the network assumed to modify the access and transmembrane resistance as well as the capacitance.

View Article and Find Full Text PDF

The zebrafish has emerged as a very relevant animal model for probing the pathophysiology of human skeletal muscle disorders. This vertebrate animal model displays a startle response characterized by high-frequency swimming activity powered by contraction of fast skeletal muscle fibers excited at extremely high frequencies, critical for escaping predators and capturing prey. Such intense muscle performance requires extremely fast properties of the contractile machinery but also of excitation-contraction coupling, the process by which an action potential spreading along the sarcolemma induces a change in configuration of the dihydropyridine receptors, resulting in intramembrane charge movements, which in turn triggers the release of Ca2+ from the sarcoplasmic reticulum.

View Article and Find Full Text PDF

One of the most important functions of skeletal muscle is to respond to nerve stimuli by contracting. This function ensures body movement but also participates in other important physiological roles, like regulation of glucose homeostasis. Muscle activity is closely regulated to adapt to different demands and shows a plasticity that relies on both transcriptional activity and nerve stimuli.

View Article and Find Full Text PDF

Skeletal muscles are composed of hundreds of multinucleated muscle fibers (myofibers) whose myonuclei are regularly positioned all along the myofiber's periphery except the few ones clustered underneath the neuromuscular junction (NMJ) at the synaptic zone. This precise myonuclei organization is altered in different types of muscle disease, including centronuclear myopathies (CNMs). However, the molecular machinery regulating myonuclei position and organization in mature myofibers remains largely unknown.

View Article and Find Full Text PDF

Mutations in the BIN1 (Bridging Interactor 1) gene, encoding the membrane remodeling protein amphiphysin 2, cause centronuclear myopathy (CNM) associated with severe muscle weakness and myofiber disorganization and hypotrophy. There is no available therapy, and the validation of therapeutic proof of concept is impaired by the lack of a faithful and easy-to-handle mammalian model. Here, we generated and characterized the Bin1 mouse through Bin1 knockout in skeletal muscle.

View Article and Find Full Text PDF

In intact muscle fibers, functional properties of ryanodine receptor (RYR)-mediated sarcoplasmic reticulum (SR) Ca2+ release triggered by activation of the voltage sensor CaV1.1 have so far essentially been addressed with diffusible Ca2+-sensitive dyes. Here, we used a domain (T306) of the protein triadin to target the Ca2+-sensitive probe GCaMP6f to the junctional SR membrane, in the immediate vicinity of RYR channels, within the triad region.

View Article and Find Full Text PDF

Mutations in the RYR1 gene, encoding the skeletal muscle calcium channel RyR1, lead to congenital myopathies, through expression of a channel with abnormal permeability and/or in reduced amount, but the direct functional whole organism consequences of exclusive reduction in RyR1 amount have never been studied. We have developed and characterized a mouse model with inducible muscle specific RYR1 deletion. Tamoxifen-induced recombination in the RYR1 gene at adult age resulted in a progressive reduction in the protein amount reaching a stable level of 50% of the initial amount, and was associated with a progressive muscle weakness and atrophy.

View Article and Find Full Text PDF

Skeletal muscle development and regeneration are tightly regulated processes. How the intracellular organization of muscle fibers is achieved during these steps is unclear. Here, we focus on the cellular and physiological roles of amphiphysin 2 (BIN1), a membrane remodeling protein mutated in both congenital and adult centronuclear myopathies (CNM), that is ubiquitously expressed and has skeletal muscle-specific isoforms.

View Article and Find Full Text PDF

In response to excitation of skeletal muscle fibers, trains of action potentials induce changes in the configuration of the dihydropyridine receptor (DHPR) anchored in the tubular membrane which opens the Ca release channel in the sarcoplasmic reticulum membrane. The DHPR also functions as a voltage-gated Ca channel that conducts L-type Ca currents routinely recorded in mammalian muscle fibers, which role was debated for more than four decades. Recently, to allow a closer look into the role of DHPR Ca influx in mammalian muscle, a knock-in (ki) mouse model (ncDHPR) carrying mutation N617D (adjacent to domain II selectivity filter E) in the DHPRα subunit abolishing Ca permeation through the channel was generated [Dayal et al.

View Article and Find Full Text PDF

Aims/hypothesis: Disrupted intracellular Ca handling is known to play a role in diabetic cardiomyopathy but it has also been postulated to contribute to obesity- and type 2 diabetes-associated skeletal muscle dysfunction. Still, there is so far very limited functional insight into whether, and if so to what extent, muscular Ca homeostasis is affected in this situation, so as to potentially determine or contribute to muscle weakness. In differentiated muscle, force production is under the control of the excitation-contraction coupling process: upon plasma membrane electrical activity, the Ca1.

View Article and Find Full Text PDF

Bethlem myopathy (BM) is a neuromuscular disease characterized by joint contractures and muscle weakness. BM is caused by mutations in one of the genes encoding one of the three α-chains of collagen VI (COLVI), a component of the skeletal muscle extracellular matrix. Nowadays, an unresolved question is to understand how alteration of COLVI located outside the muscle cells leads to functional modifications in muscle fibers.

View Article and Find Full Text PDF

In adult skeletal muscles, 2 junctophilin isoforms (JPH1 and JPH2) tether the sarcoplasmic reticulum (SR) to transverse tubule (T-tubule) membranes, generating stable membrane contact sites known as triads. JPHs are anchored to the membrane of the SR by a C-terminal transmembrane domain (TMD) and bind the T-tubule membrane through their cytosolic N-terminal region, which contains 8 lipid-binding (MORN) motifs. By combining expression of GFP-JPH1 deletion mutants in skeletal muscle fibers with in vitro biochemical experiments, we investigated the molecular determinants of JPH1 recruitment at triads in adult skeletal muscle fibers.

View Article and Find Full Text PDF

Skeletal muscle deficiency in the 3-phosphoinositide (PtdInsP) phosphatase myotubularin (MTM1) causes myotubular myopathy which is associated with severe depression of voltage-activated sarcoplasmic reticulum Ca release through ryanodine receptors. In the present study we aimed at further understanding how Ca release is altered in MTM1-deficient muscle fibers, at rest and during activation. While in wild-type muscle fibers, SR Ca release exhibits fast stereotyped kinetics of activation and decay throughout the voltage range of activation, Ca release in MTM1-deficient muscle fibers exhibits slow and unconventional kinetics at intermediate voltages, suggestive of partial loss of the normal control of ryanodine receptor Ca channel activity.

View Article and Find Full Text PDF

High metabolic activity and existence of a large transmembrane inward electrochemical gradient for H at rest promote intracellular acidification of skeletal muscle. Exchangers and cotransports efficiently contend against accumulation of intracellular H and associated deleterious effects on muscle functions. Voltage-gated H channels have also been found to represent another H extrusion pathway in cultured muscle cells.

View Article and Find Full Text PDF

Ion channel activity in the plasma membrane of living cells generates voltage changes that are critical for numerous biological functions. The membrane of the endoplasmic/sarcoplasmic reticulum (ER/SR) is also endowed with ion channels, but whether changes in its voltage occur during cellular activity has remained ambiguous. This issue is critical for cell functions that depend on a Ca flux across the reticulum membrane.

View Article and Find Full Text PDF

Centronuclear myopathies (CNM) are a subtype of congenital myopathies (CM) characterized by skeletal muscle weakness and an increase in the number of central myonuclei. We have previously identified three CNM probands, two with associated dilated cardiomyopathy, carrying striated preferentially expressed gene (SPEG) mutations. Currently, the role of SPEG in skeletal muscle function is unclear as constitutive SPEG-deficient mice developed severe dilated cardiomyopathy and died in utero.

View Article and Find Full Text PDF

Type 1 hypokalemic periodic paralysis (HypoPP1) is a poorly understood genetic neuromuscular disease characterized by episodic attacks of paralysis associated with low blood K The vast majority of HypoPP1 mutations involve the replacement of an arginine by a neutral residue in one of the S4 segments of the α1 subunit of the skeletal muscle voltage-gated Ca channel, which is thought to generate a pathogenic gating pore current. The V876E HypoPP1 mutation has the peculiarity of being located in the S3 segment of domain III, rather than an S4 segment, raising the question of whether such a mutation induces a gating pore current. Here we successfully transfer cDNAs encoding GFP-tagged human wild-type (WT) and V876E HypoPP1 mutant α1 subunits into mouse muscles by electroporation.

View Article and Find Full Text PDF

Key Points: Dynamin 2 is a ubiquitously expressed protein involved in membrane trafficking processes. Mutations in the gene encoding dynamin 2 are responsible for a congenital myopathy associated with centrally located nuclei in the muscle fibres. Using muscle fibres from a mouse model of the most common mutation responsible for this disease in humans, we tested whether altered Ca signalling and excitation-contraction coupling contribute to muscle weakness.

View Article and Find Full Text PDF