Publications by authors named "Jacquelyn Zimmerman"

Pancreatic ductal adenocarcinoma (PDAC) carries an extremely poor prognosis, in part resulting from cellular heterogeneity that supports overall tumorigenicity. Cancer associated fibroblasts (CAF) are key determinants of PDAC biology and response to systemic therapy. While CAF subtypes have been defined, the effects of patient-specific CAF heterogeneity and plasticity on tumor cell behavior remain unclear.

View Article and Find Full Text PDF

Successful pancreatic ductal adenocarcinoma (PDAC) immunotherapy requires therapeutic combinations that induce quality T cells. Tumor microenvironment (TME) analysis following therapeutic interventions can identify response mechanisms, informing design of effective combinations. We provide a reference single-cell dataset from tumor-infiltrating leukocytes (TILs) from a human neoadjuvant clinical trial comparing the granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting allogeneic PDAC vaccine GVAX alone, in combination with anti-PD1 or with both anti-PD1 and CD137 agonist.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new method for matching chemotherapy regimens to pancreatic cancer patients based on chemosensitivity data from patient-derived organoids (PDOs).
  • In a study involving PDOs from 95 patients, the method successfully matched 91% of the organoids to standard chemotherapeutics and showed that well-matched patients had significantly better clinical outcomes, such as reduced tumor markers and improved survival rates.
  • The findings suggest that using PDO pharmacotyping to customize chemotherapy could lead to better treatment strategies and outcomes for patients with pancreatic ductal adenocarcinoma.
View Article and Find Full Text PDF

This study introduces a new imaging, spatial transcriptomics (ST), and single-cell RNA-sequencing integration pipeline to characterize neoplastic cell state transitions during tumorigenesis. We applied a semi-supervised analysis pipeline to examine premalignant pancreatic intraepithelial neoplasias (PanINs) that can develop into pancreatic ductal adenocarcinoma (PDAC). Their strict diagnosis on formalin-fixed and paraffin-embedded (FFPE) samples limited the single-cell characterization of human PanINs within their microenvironment.

View Article and Find Full Text PDF

Unlabelled: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy characterized by an immunosuppressive tumor microenvironment enriched with cancer-associated fibroblasts (CAF). This study used a convergence approach to identify tumor cell and CAF interactions through the integration of single-cell data from human tumors with human organoid coculture experiments. Analysis of a comprehensive atlas of PDAC single-cell RNA sequencing data indicated that CAF density is associated with increased inflammation and epithelial-mesenchymal transition (EMT) in epithelial cells.

View Article and Find Full Text PDF

Purpose: Targeting solid tumors with chimeric antigen receptor (CAR) T cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAF), which may contribute to the limited efficacy of mesothelin-directed CAR T cells in early-phase clinical trials. To provide a more favorable TME for CAR T cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T cells with an antimesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAF through fibroblast activation protein (FAP) and engages T cells through CD3 (termed mesoFAP CAR-TEAM cells).

View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic cancer is more common in older people and tends to have a worse prognosis for them due to various factors in the tumor microenvironment.
  • Research focused on how aged pancreatic fibroblasts, which influence cancer progression, secrete more growth/differentiation factor 15 (GDF-15) compared to younger fibroblasts.
  • GDF-15 promotes tumor growth by activating the AKT signaling pathway, indicating that age-related changes in the pancreatic microenvironment contribute to cancer progression and could lead to new treatment strategies.
View Article and Find Full Text PDF

Non-negative matrix factorization (NMF) is an unsupervised learning method well suited to high-throughput biology. However, inferring biological processes from an NMF result still requires additional post hoc statistics and annotation for interpretation of learned features. Here, we introduce a suite of computational tools that implement NMF and provide methods for accurate and clear biological interpretation and analysis.

View Article and Find Full Text PDF
Article Synopsis
  • The paper presents a conceptual framework called "cell behavior hypothesis grammar," which translates biological knowledge into natural language statements to create computational models.
  • This approach enables researchers to conduct virtual experiments that enhance understanding of complex multicellular systems, particularly in areas like tumor biology and immunotherapy, while fostering collaboration across various biological research fields.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied a type of cancer called pancreatic ductal adenocarcinoma (PDAC) to learn how it spreads, especially through a way of growing tiny organ-like structures (organoids) that mimic real cancer cells.
  • They found that invasive cancer cells had different genes turned on compared to non-invasive cells from the same patient, which helps explain how the cancer invades.
  • By looking at data from other sources, they discovered that the surroundings of the tumor (like nearby non-cancer cells) can influence how aggressive the cancer becomes, and certain proteins can play a big role in this process.
View Article and Find Full Text PDF

Background: Neoadjuvant therapy (NAT) is increasingly applied in pancreatic ductal adenocarcinoma (PDAC); however, accurate prediction of therapeutic response to NAT remains a pressing clinical challenge. Cancer-cell-derived sialylated immunoglobulin G (SIA-IgG) was previously identified as a prognostic biomarker in PDAC. This study aims to explore whether SIA-IgG expression in treatment-naïve fine needle aspirate (FNA) biopsy specimens could predict the pathological response (PR) to NAT for PDAC.

View Article and Find Full Text PDF

Successful pancreatic ductal adenocarcinoma (PDAC) immunotherapy necessitates optimization and maintenance of activated effector T cells (Teff). We prospectively collected and applied multi-omic analyses to paired pre- and post-treatment PDAC specimens collected in a platform neoadjuvant study of granulocyte-macrophage colony-stimulating factor-secreting allogeneic PDAC vaccine (GVAX) vaccine ± nivolumab (anti-programmed cell death protein 1 [PD-1]) to uncover sensitivity and resistance mechanisms. We show that GVAX-induced tertiary lymphoid aggregates become immune-regulatory sites in response to GVAX + nivolumab.

View Article and Find Full Text PDF

Purpose: Patient-derived organoids (PDO) are a promising technology to support precision medicine initiatives for patients with pancreatic ductal adenocarcinoma (PDAC). PDOs may improve clinical next-generation sequencing (NGS) and enable rapid ex vivo chemotherapeutic screening (pharmacotyping).

Experimental Design: PDOs were derived from tissues obtained during surgical resection and endoscopic biopsies and studied with NGS and pharmacotyping.

View Article and Find Full Text PDF

Tumor involvement of major vascular structures limits surgical options in pancreatic adenocarcinoma (PDAC), which in turn limits opportunities for cure. Despite advances in locoregional approaches, there is currently no role for incomplete resection. This study evaluated a gelatinized neoantigen-targeted vaccine applied to a grossly positive resection margin in preventing local recurrence.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with one of the lowest survival rates. Early detection, an improved understanding of tumor biology, and novel therapeutic discoveries are needed in order to improve overall patient survival. Scientific progress towards meeting these goals relies upon accurate modeling of the human disease.

View Article and Find Full Text PDF

Interventions to optimize blood culture (BCx) practices in adult inpatients are limited. We conducted a before-after study evaluating the impact of a diagnostic stewardship program that aimed to optimize BCx use in a medical intensive care unit (MICU) and five medicine units at a large academic center. The program included implementation of an evidence-based algorithm detailing indications for BCx use and education and feedback to providers about BCx rates and indication inappropriateness.

View Article and Find Full Text PDF

Objective: PDAC patients who undergo surgical resection and receive effective chemotherapy have the best chance of long-term survival. Unfortunately, we lack predictive biomarkers to guide optimal systemic treatment. Ex-vivo generation of PDO for pharmacotyping may serve as predictive biomarkers in PDAC.

View Article and Find Full Text PDF

Almost all pancreatic ductal adenocarcinomas (PDA) develop following KRAS activation, which triggers epithelial transformation and recruitment of desmoplastic stroma through additional transcriptional and epigenetic regulation, but only a few of these regulatory mechanisms have been described. We profiled dysregulated miRNAs starting with the earliest premalignant pancreatic intraepithelial neoplasias (PanIN) in genetically engineered mutated KRAS and P53 (KPC) mice programmed to recapitulate human PDA tumorigenesis. We identified miR-21 and miR-224 as cell-specific and compartment-specific regulators in PanINs and PDA.

View Article and Find Full Text PDF

Purpose: Immune checkpoint inhibitors (ICIs) cause immune-related adverse events (irAEs). The proportion of patients who are hospitalized for irAEs and their spectrum, management, and outcomes are not well described.

Methods: We report the proportion of hospitalized patients in an academic center who were treated with ICIs from May to December 2017.

View Article and Find Full Text PDF

Background: Administration of amplitude modulated 27·12 MHz radiofrequency electromagnetic fields (AM RF EMF) by means of a spoon-shaped applicator placed on the patient's tongue is a newly approved treatment for advanced hepatocellular carcinoma (HCC). The mechanism of action of tumour-specific AM RF EMF is largely unknown.

Methods: Whole body and organ-specific human dosimetry analyses were performed.

View Article and Find Full Text PDF

Immune thrombocytopenic purpura (ITP) causes thrombocytopenia through the autoimmune destruction of platelets. Corticosteroids remain the first line of therapy, and traditionally splenectomy has been the second. While the availability of thrombopoietin receptor agonists (TPO-RAs) has expanded treatment options, there is little data for the ideal management of these agents in preparation for splenectomy.

View Article and Find Full Text PDF