Continuing investigation of fractions from a supercritical fluid extract of Chinese licorice (Glycyrrhiza uralensis) roots has led to the isolation of 12 phenolic compounds, of which seven were described previously from this extract. In addition to these seven metabolites, four known components, 1-methoxyerythrabyssin II (4), 6,8-diprenylgenistein, gancaonin G (5), and isoglycyrol (6), and one new isoflavan, licorisoflavan C (7), were characterized from this material for the first time. Treatment of licoricidin (1) with palladium chloride afforded larger amounts of 7 and also yielded two new isoflavans, licorisoflavan D (8), which was subsequently detected in the licorice extract, and licorisoflavan E (9).
View Article and Find Full Text PDFHalitosis affects a large proportion of the population and is, in most cases, caused by the production of volatile sulfur compounds (VSCs), particularly methyl mercaptan and hydrogen sulfide, by specific bacterial species colonizing the oral cavity. In this study, a supercritical extract of Chinese licorice (Glycyrrhiza uralensis), and its major isoflavans, licoricidin and licorisoflavan A, were investigated for their effect on growth, VSC production and protease activity of Porphyromonas gingivalis, Prevotella intermedia and Solobacterium moorei, which have been associated with halitosis. The effects of licorice extract, licoricidin, and licorisoflavan A on VSC production in a saliva model were also tested.
View Article and Find Full Text PDFPhytochemical investigation of a supercritical fluid extract of Glycyrrhiza uralensis has led to the isolation of 20 known isoflavonoids and coumarins, and glycycarpan (7), a new pterocarpan. The presence of two isoflavan-quinones, licoriquinone A (8) and licoriquinone B (9), in a fraction subjected to gel filtration on Sephadex LH-20 is due to suspected metal-catalyzed oxidative degradation of licoricidin (1) and licorisoflavan A (2). The major compounds in the extract, as well as 8, were evaluated for their ability to inhibit the growth of several major oral pathogens.
View Article and Find Full Text PDFThe macamides are a distinct class of secondary metabolites that have so far been found only in Lepidium meyenii Walp. (Maca). Using HPLC-UV-MS/MS, the main macamides have been identified as n-benzylhexadecanamide, n-benzyl-(9Z)-octadecenamide, n-benzyl-(9Z, 12Z)-octadecadienamide, n-benzyl-(9Z, 12Z, 15Z)-octadecatrienamide and n-benzyloctadecanamide.
View Article and Find Full Text PDF