To quantify the free form of a protein as a target-engagement biomarker in nonhuman primate serum, a Meso Scale Discovery ligand-binding assay was developed and qualified. The initial assay produced an unexpected artifact when used to measure the free target in study samples dosed with drug. By using incurred study samples dosed with high drug levels to test assay performance, we developed an alternative assay that does not suffer from drug interference.
View Article and Find Full Text PDFAllergy Asthma Immunol Res
March 2019
Reslizumab and mepolizumab are recently approved monoclonal antibodies for the treatment of severe (uncontrolled) eosinophilic asthma. Both are effective in neutralizing the function of interleukin-5 (IL-5). This study is the first to compare the binding affinity and potency of both antibodies in head-to-head assays.
View Article and Find Full Text PDFTL1A is an attractive therapeutic target for the treatment of mucosal inflammation associated with inflammatory bowel disease (IBD) and asthma. Blockade of the TL1A pathway has been shown to reduce inflammatory responses while leaving baseline immunity intact, and to be beneficial in animal models of colitis and asthma. Given the therapeutic potential of blocking this pathway in IBD and asthma, we developed C03V, a human antibody that binds with high affinity to soluble and membrane-bound TL1A.
View Article and Find Full Text PDFA novel series of 3,4-diaza-bicyclo[4.1.0]hept-4-en-2-ones were designed and synthesized as H3R analogs of irdabisant 6.
View Article and Find Full Text PDFA series of fused cyclopropyl-4,5-dihydropyridazin-3-one (3,4-diaza-bicyclo[4.1.0]hept-4-en-2-one) phenoxypiperidine analogs was designed and synthesized, leading to the identification of (1R,6S)-5-[4-(1-cyclobutyl-piperidin-4-yloxy)-phenyl]-3,4-diaza-bicyclo[4.
View Article and Find Full Text PDFA novel class of benzocinnolinones analogs of irdabisant were designed and synthesized as histamine H3R antagonists/inverse agonists. Modifications to the pyridazinone portion of the core and linker led to the identification of molecules with excellent target potency and selectivity with improved rat pharmacokinetic properties and reduced potential hERG liabilities.
View Article and Find Full Text PDFA novel series of 4-pyridazin-3-one and 5-pyridazin-3-one analogues were designed and synthesized as H(3)R antagonists. Structure-activity relationship revealed the 5-pyridazin-3-ones 8a and S-methyl 8b had excellent human and rat H(3)R affinities, and acceptable pharmacokinetic properties. In vivo evaluation of 8a showed potent activity in the rat dipsogenia model and robust wake-promoting activity in the rat EEG/EMG model.
View Article and Find Full Text PDFA novel class of 1'-cyclobutyl-6-(4-piperidyloxy)spiro[benzopyran-2,4'-piperidine] derivatives with low nanomolar affinity for the human and rat histamine-3 receptors (H(3)Rs) are described. The spirobenzopyran piperidine ether analogs demonstrated excellent H(3)R affinity and selectivity against histamine receptor subtypes (H(1)R, H(2)R, and H(4)R), were stable in liver microsomes, and had selectivity against CYP P450 enzymes. Compounds 10, 13, 15, and 16 demonstrated high H(3)R affinity, in vitro liver microsomal stability, selectivity against CYP isoforms, moreover, these ether analogs exhibited acceptable iv pharmacokinetic (PK) properties but had poor oral exposure in rat.
View Article and Find Full Text PDFStructure-activity relationship on a novel ketone class of H(3)R antagonists/inverse agonists is disclosed. Compound 4 showed excellent target potency, selectivity and brain penetration. Evaluation of antagonist 4 in the rat EEG/EMG model demonstrated robust wake activity thereby establishing preclinical proof of concept.
View Article and Find Full Text PDFStructure-activity relationships for a series of phenoxypiperidine pyridazin-3-one H(3)R antagonists/inverse agonists are disclosed. The search for compounds with improved hERG and DAT selectivity without the formation of in vivo active metabolites identified 6-[4-(1-cyclobutyl-piperidin-4-yloxy)-phenyl]-4,4-dimethyl-4,5-dihydro-2H-pyridazin-3-one 17b. Compound 17b met discovery flow criteria, demonstrated potent H(3)R functional antagonism in vivo in the rat dipsogenia model and potent wake activity in the rat EEG/EMG model at doses as low as 0.
View Article and Find Full Text PDFOptimization of the R(2) and R(6) positions of (5-{4-[3-(R)-2-methylpyrrolin-1-yl-propoxy]phenyl}-2H-pyridazin-3-one) 2a with constrained phenoxypiperidines led to the identification of 5-[4-(cyclobutyl-piperidin-4-yloxy)-phenyl]-6-methyl-2H-pyridazin-3-one 8b as a potent, selective histamine H(3) receptor antagonist with favorable pharmacokinetic properties. Compound 8b had an excellent safety genotoxocity profile for a CNS-active compound in the Ames and micronucleus tests, also displayed potent H(3)R antagonist activity in the brain in the rat dipsogenia model and robust wake activity in the rat EEG/EMG model.
View Article and Find Full Text PDFA novel class of 4-alkoxy-[1'-cyclobutyl-spiro(3,4-dihydrobenzopyran-2,4'-piperidine)] analogues were designed and synthesized as H(3)R antagonists. Structure-activity relationship identified sulfone 27 with excellent H(3)R affinities in both humans and rats, and acceptable pharmacokinetic properties. Further, compound 28 achieved single digit nanomolar H(3)R affinities in both species with minimum hERG activity.
View Article and Find Full Text PDFH(3)R structure-activity relationships for a new class of 4,5-dihydropyridazin-3-one H(3)R antagonists/inverse agonists are disclosed. Modification of the 4,5-dihydropyridazinone moiety to block in vivo metabolism identified 4,4-dimethyl-6-{4-[3-((R)-2-methyl-pyrrolidin-1-yl)-propoxy]-phenyl}-4,5-dihydro-2H-pyridazin-3-one 22 as a lead candidate demonstrating potent in vivo functional H(3)R antagonism in the rat dipsogenia model and robust wake promoting activity in the rat EEG/EMG model.
View Article and Find Full Text PDFPrevious studies have shown that (5-{4-[3-(R)-2-methylpyrrolin-1-yl-propoxy]phenyl}-2H-pyridazin-3-one) 2 had high affinity for both the human (hH(3)R K(i) = 2.8 nM) and rat H(3)Rs (rH(3)R K(i) = 8.5 nM) but displayed low oral bioavailability in the rat.
View Article and Find Full Text PDF6-{4-[3-(R)-2-Methylpyrrolidin-1-yl)propoxy]-phenyl}-2H-pyridazin-3-one 6 (Irdabisant; CEP-26401) was recently reported as a potent H(3)R antagonist with excellent drug-like properties and in vivo activity that advanced into clinical evaluation. A series of pyridone analogs of 6 was synthesized and evaluated as H(3)R antagonists. Structure-activity relationships revealed that the 5-pyridone regiomer was optimal for H(3)R affinity.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2011
Pyridazinone 1 was recently reported as a potent H(3)R antagonist with good drug-like properties and in vivo activity. A series of constrained amine analogs of 1 was synthesized to identify compounds with improved pharmacokinetic profiles. From these efforts, a new class of (S)-2-pyrrolidin-1-ylmethyl-1-pyrrolidinyl amides was identified.
View Article and Find Full Text PDFH(3)R structure-activity relationships on a novel class of pyridazin-3-one H(3)R antagonists/inverse agonists are disclosed. Modifications of the pyridazinone core, central phenyl ring and linker led to the identification of molecules with excellent target potency, selectivity and pharmacokinetic properties. Compounds 13 and 21 displayed potent functional H(3)R antagonism in vivo in the rat dipsogenia model and demonstrated robust wake activity in the rat EEG/EMG model.
View Article and Find Full Text PDF