Publications by authors named "Jacquelyn Haskell"

New prevention and treatment strategies are needed for visceral leishmaniasis, particularly ones that can be deployed simply and inexpensively in areas where leishmaniasis is endemic. Synthetic molecules that activate Toll-like receptor 7 and 8 (TLR7/8) pathways have previously been demonstrated to enhance protection against cutaneous leishmaniasis. We initially sought to determine whether the TLR7/8-activating molecule resiquimod might serve as an effective vaccine adjuvant targeting visceral leishmaniasis caused by infection with Leishmania infantum chagasi.

View Article and Find Full Text PDF

There are currently no effective vaccines for visceral leishmaniasis, the second most deadly parasitic infection in the world. Here, we describe a novel whole-cell vaccine approach using Leishmania infantum chagasi promastigotes treated with the psoralen compound amotosalen (S-59) and low doses of UV A radiation. This treatment generates permanent, covalent DNA cross-links within parasites and results in Leishmania organisms termed killed but metabolically active (KBMA).

View Article and Find Full Text PDF

Host defense peptides are naturally occurring molecules that play essential roles in innate immunity to infection. Based on prior structure-function knowledge, we tested two synthetic peptides (RP-1 and AA-RP-1) modeled on the conserved, microbicidal α-helical domain of mammalian CXCL4 platelet kinocidins. These peptides were evaluated for efficacy against Leishmania species, the causative agents of the group of diseases known as leishmaniasis.

View Article and Find Full Text PDF

Imiquimod is a synthetic Toll-like receptor 7 (TLR7) agonist approved for the topical treatment of actinic keratoses, superficial basal cell carcinoma, and genital warts. Imiquimod leads to an 80-100% cure rate of lentigo maligna; however, studies of invasive melanoma are lacking. We conducted a pilot study to characterize the local, regional, and systemic immune responses induced by imiquimod in patients with high-risk melanoma.

View Article and Find Full Text PDF

Background: The liver X receptors (LXRs) are a family of nuclear receptor transcription factors that are activated by oxysterols and have defined roles in both lipid metabolism and cholesterol regulation. LXRs also affect antimicrobial responses and have anti-inflammatory effects in macrophages. As mice lacking LXRs are more susceptible to infection by intracellular bacteria Listeria monocytogenes and Mycobacterium tuberculosis, we hypothesized that LXR might also influence macrophage responses to the intracellular protozoan parasite Leishmania chagasi/infantum, a causative agent of visceral leishmaniasis.

View Article and Find Full Text PDF