By using different salts as a method to achieve gelation of two different amino-acid-functionalised perylene bisimides, we were able to tune reduction potentials while maintaining the mechanical and optical properties of the system all at pH 7.4.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2018
In this study, we present a range of efficient highly durable electrochromic materials that demonstrate excellent redox and lifetime stability, sufficient coloration contrast ratios, and the best-in-class electron-transfer constants. The materials were formed by anchoring as little as a monolayer of predefined iron complexes on a surface-enhanced conductive solid support. The thickness of the substrate was optimized to maximize the change in optical density.
View Article and Find Full Text PDFThe ability to form complex 3D architectures using nanoparticles (NPs) as the building blocks and complex macromolecules that direct these assemblies remains a challenging objective for nanotechnology. Here we report results in which the partial substitution of classical Turkevich citrate-capped gold NPs by a novel, heteroaromatic ligand (L) results in NPs able to form coordination-driven assemblies mediated by free or protein-bound iron ions. The morphology of these assemblies can be tuned depending on the source of iron.
View Article and Find Full Text PDFNovel electrochromic (EC) materials were developed and formed by a two-step chemical deposition process. First, a self-assembled monolayer (SAM) of 2,2':6',2″-terpyridin-4'-ylphosphonic acid, L, was deposited on the surface of a nanostructured conductive indium-tin oxide (ITO) screen-printed support by simple submerging of the support into an aqueous solution of L. Further reaction of the SAM with Fe or Ru ions results in the formation of a monolayer of the redox-active metal complex covalently bound to the ITO support (Fe-L/ITO and Ru-L/ITO, respectively).
View Article and Find Full Text PDF