Background: Radioembolization with yttrium-90 (Y-90) is utilized to treat primary liver malignancies. The efficacy of this intra-arterial therapy in arterially hypoperfused tumors is not known.
Methods: We reviewed data of patients with primary liver tumors treated with Y-90 prescription doses of at least 150 Gy.
Purpose: High dose-rate (HDR) brachytherapy is integral for the treatment of numerous cancers. Preclinical studies involving HDR brachytherapy are limited. We aimed to describe a novel platform allowing multi-modality studies with clinical HDR brachytherapy and external beam irradiators, establish baseline dosimetry standard of a preclinical orthovoltage irradiator, to determine accurate dosimetric methods.
View Article and Find Full Text PDFProstate-specific membrane antigen (PSMA) is a cell surface protein highly expressed in nearly all prostate cancers, with restricted expression in some normal tissues. The differential expression of PSMA from tumor to non-tumor tissue has resulted in the investigation of numerous targeting strategies for therapy of patients with metastatic prostate cancer. In March of 2022, the FDA granted approval for the use of lutetium-177 PSMA-617 (Lu-177-PSMA-617) for patients with PSMA-positive metastatic castration-resistant prostate cancer (mCRPC) who have been treated with androgen receptor pathway inhibition and taxane-based chemotherapy.
View Article and Find Full Text PDFBackground: There is growing interest among pediatric institutions for implementing iodine-131 (I-131) meta-iodobenzylguanidine (MIBG) therapy for treating children with high-risk neuroblastoma. Due to regulations on the medical use of radioactive material (RAM), and the complexity and safety risks associated with the procedure, a multidisciplinary team involving radiation therapy/safety experts is required. Here, we describe methods for implementing pediatric I-131 MIBG therapy and evaluate our program's robustness via failure modes and effects analysis (FMEA).
View Article and Find Full Text PDFNeuroendocrine tumors (NETs) are a heterogeneous group of tumors that originate in endocrine tissues throughout the body. Though most are indolent, clinical outcomes vary greatly based on histologic differentiation and grade. Peptide receptor radionuclide therapy has emerged as a promising treatment for patients with locally advanced and/or metastatic disease refractory to standard of care treatment.
View Article and Find Full Text PDFProstate-specific membrane antigen is a transmembrane protein found predominately on prostate epithelium and is expressed at high levels in prostate cancer. In this review, we discuss the background, clinical data, patient selection, side effects, and necessary resources to deliver lutetium-177 prostate-specific membrane antigen in the research setting, or as standard of care if approved by the United States Food and Drug Administration. Targeted radionuclide therapeutics require understanding of fundamental principles of radiobiology and physics, and radiation oncologists and medical physicists are well-suited to play an integral role in their delivery and treatment response monitoring as key components of a multidisciplinary care team.
View Article and Find Full Text PDFThe task group (TG) on magnetic resonance imaging (MRI) implementation in high-dose-rate (HDR) brachytherapy (BT)-Considerations from simulation to treatment, TG 303, was constituted by the American Association of Physicists in Medicine's (AAPM's) Science Council under the direction of the Therapy Physics Committee, the Brachytherapy Subcommittee, and the Working Group on Brachytherapy Clinical Applications. The TG was charged with developing recommendations for commissioning, clinical implementation, and on-going quality assurance (QA). Additionally, the TG was charged with describing HDR BT workflows and evaluating practical consideration that arise when implementing MR imaging.
View Article and Find Full Text PDFBackground: We present the first report comparing early toxicity outcomes with high-dose rate brachytherapy (HDR-BT) boost upfront versus intensity modulated RT (IMRT) upfront combined with androgen deprivation therapy (ADT) as definitive management for intermediate risk or higher prostate cancer.
Methods And Materials: We reviewed all non-metastatic prostate cancer patients who received HDR-BT boost from 2014 to 2019. HDR-BT boost was offered to patients with intermediate-risk disease or higher.
Purpose: Our purpose was to describe the risk of radiation-induced brachial plexopathy (RIBP) in patients with breast cancer who received comprehensive adjuvant radiation therapy (RT).
Methods And Materials: Records for 498 patients who received comprehensive adjuvant RT (treatment of any residual breast tissue, the underlying chest wall, and regional nodes) between 2004 and 2012 were retrospectively reviewed. All patients were treated with conventional 3 to 5 field technique (CRT) until 2008, after which intensity modulated RT (IMRT) was introduced.
Int J Radiat Oncol Biol Phys
July 2021
Purpose: To comprehensively characterize dosimetric differences between calculations with a commercial model-based dose calculation algorithm (MBDCA) and the TG-43 formalism in application to accelerated partial breast irradiation (APBI) with the strut-adjusted volume implant (SAVI) applicator.
Methods: Dose for 100 patients treated with the SAVI applicator was recalculated with an MBDCA for comparison to dose calculated via TG-43. For every pair of dose calculations, dose-volume histogram (DVH) metrics including V90%, V95%, V100%, V150%, and V200% for the PTV_EVAL were compared.
Purpose: The annual quality assurance (QA) of Leksell Gamma Knife (LGK) systems are typically performed using films. Film is a good candidate for small field dosimetry due to its high spatial resolution and availability. However, there are multiple challenges with using film; film does not provide real-time measurement and requires batch-specific calibration.
View Article and Find Full Text PDFCurrent available secondary dose calculation software for Gamma Knife radiosurgery falls short in situations where the target is shallow in depth or when the patient is positioned with a gamma angle other than 90°. In this work, we evaluate a new secondary calculation software which utilizes an innovative method to handle nonstandard gamma angles and image thresholding to render the skull for dose calculation. 800 treatment targets previously treated with our GammaKnife Icon system were imported from our treatment planning system (GammaPlan 11.
View Article and Find Full Text PDFPurpose: High-dose-rate brachytherapy (HDR-BT) delivered in a single fraction as monotherapy is a potential treatment modality for low- and intermediate-risk prostate cancer (LIR-PC); however, outcome data with this technique remain limited. Here we describe our institutional HDR monotherapy experience and report the efficacy and toxicity of this treatment.
Material And Methods: LIR-PC patients who received a definitive single fraction HDR-BT during 2013-2017 were retrospectively identified.
Purpose: Characterize the intra-fraction motion management (IFMM) system found on the Gamma Knife Icon (GKI), including spatial accuracy, latency, temporal performance, and overall effect on delivered dose.
Methods: A phantom was constructed, consisting of a three-axis translation mount, a remote motorized flipper, and a thermoplastic sphere surrounding a radiation detector. An infrared marker was placed on the translation mount secured to the flipper.
Purpose: To compare clinical outcomes between low-dose-rate (LDR) brachytherapy and high-dose-rate (HDR) brachytherapy for cervical cancer patients.
Methods And Materials: All consecutive newly diagnosed cervical cancer patients undergoing pretreatment 18-fluorodeoxyglucose positron emission tomography imaging and treated with curative-intent definitive chemoradiation from 1997 to 2016 at a U.S.
Obese patients constitute 40% of the adult population. MRIs of obese patients are typically challenging because of the effects of a large field of view on image quality and the increased risk of thermal burns from contact with the bore. In this case report, the impacts of obesity on MRI procedures and safety are introduced.
View Article and Find Full Text PDFPurpose: Yttrium-90 ( Y) microsphere radioembolization enables selective internal radiotherapy for hepatic malignancies. Currently, there is no standard postdelivery imaging and dosimetry of the microsphere distribution to verify treatment. Recent studies have reported utilizing the small positron yield of Y (32 ppm) with positron emission tomography (PET) to perform treatment verification and dosimetry analysis.
View Article and Find Full Text PDFPurpose: To standardize and automate the high-dose-rate (HDR) brachytherapy planning quality assurance (QA) process utilizing scripting with application programming interface (API) in a commercially available treatment planning system (TPS).
Methods And Materials: Site- and applicator-dependent plan quality (PQ) evaluation criteria and plan integrity (PI) checklists were established based on published guidelines, clinical protocols, and institutional experience. User designed C# programs ("scripts") were created and executed through the API to access planning information in TPS.