Sterile filtration is an integral step in the manufacturing process of biological therapeutics. Protein adsorption to the surface of the filter is an unfortunate, common occurrence that can result in manufacturing difficulties, such as filter fouling or product loss. Although many filters have surface modifications to minimize adsorption, under certain conditions binding can still occur.
View Article and Find Full Text PDFAn urgent unmet need exists for early-stage treatment of spinal cord injury (SCI). Currently methylprednisolone is the only therapeutic agent used in clinics, for which the efficacy is controversial and the side effect is well-known. We demonstrated functional restoration of injured spinal cord by self-assembled nanoparticles composed of ferulic acid modified glycol chitosan (FA-GC).
View Article and Find Full Text PDFSpinal cord injury results in significant mortality and morbidity, lifestyle changes, and difficult rehabilitation. Treatment of spinal cord injury is challenging because the spinal cord is both complex to treat acutely and difficult to regenerate. Nanomaterials can be used to provide effective treatments; their unique properties can facilitate drug delivery to the injury site, enact as neuroprotective agents, or provide platforms to stimulate regrowth of damaged tissues.
View Article and Find Full Text PDFAlthough nanocarriers hold promise for cancer chemotherapy, their intracellular drug delivery pathways are not fully understood. In particular, the influence of nanocarrier stability on cellular uptake is still uncertain. By physically loading hydrophobic FRET probes, we revealed different intracellular drug delivery routes of self-assembled and disulfide bonded micelles.
View Article and Find Full Text PDFAlthough targeted delivery mediated by ligand modified or tumor microenvironment sensitive nanocarriers has been extensively pursued for cancer chemotherapy, the efficiency is still limited by premature drug release after systemic administration. Herein we report a highly blood-stable, tumor-adaptable drug carrier made of disulfide (DS) bonded mPEG-(Cys)(4)-PDLLA micelles. Intravenously injected disulfide bonded micelles stably retained doxorubicin in the bloodstream and efficiently delivered the drug to a tumor, with a 7-fold increase of the drug in the tumor and 1.
View Article and Find Full Text PDF