Rap1 is a Ras family GTPase with a well documented role in ERK/MAP kinase signaling and integrin activation. Stimulation of the G-protein-coupled receptor PAR-1 with thrombin in human 1321N1 glioblastoma cells led to a robust increase in Rap1 activation. This response was sustained for up to 6 h and mediated through RhoA and phospholipase D (PLD).
View Article and Find Full Text PDFRho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (>100) and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies.
View Article and Find Full Text PDFJak2 tyrosine kinase plays an important role in cytokine mediated signal transduction. There are 49 tyrosine residues in Jak2 and phosphorylation of some of these are known to play important roles in the regulation of Jak2 kinase activity. Here, using mass spectrometry, we identified tyrosine residues Y372 and Y373 as novel sites of Jak2 phosphorylation.
View Article and Find Full Text PDFJanus kinase 2 (JAK2) plays a crucial role in the pathomechanism of myeloproliferative disorders and hematologic malignancies. A somatic mutation of JAK2 (Val617Phe) was previously shown to occur in 98% of patients with polycythemia vera and 50% of patients with essential thrombocythemia and primary myelofibrosis. Thus, effective JAK2 kinase inhibitors may be of significant therapeutic importance.
View Article and Find Full Text PDFAlthough the Jak2-V617F mutation has generated strong awareness because of its causative role in myeloproliferative disorders, reports of Jak2 gene aberrations linked to hematologic malignancies have preceded those of V617F by nearly a decade. These malignant mutations include Jak2 amino acid substitutions, deletions, insertions, and chromosomal translocations. As a consequence, researchers are increasingly focused on identifying Jak2 inhibitors that suppress aberrant Jak2 kinase activity.
View Article and Find Full Text PDFJak2 tyrosine kinase is essential for animal development and hyperkinetic Jak2 function has been linked to a host of human diseases. Control of this pathway using Jak2-specific inhibitors would therefore potentially serve as a useful research tool and/or therapeutic agent. Here, we used a high-throughput program called DOCK to predict the ability of 20,000 small molecules to interact with a structural pocket adjacent to the ATP-binding site of murine Jak2.
View Article and Find Full Text PDFPrevious work has suggested that the protein tyrosine phosphatase, SHP-2, may act to facilitate angiotensin II (Ang II)-mediated, Jak2-dependent signaling. However, the mechanisms by which this occurs are not known. Here, Ang II-mediated, Jak2-dependent signaling was analyzed in a fibroblast cell line lacking the N-terminal, SH2 domain of SHP-2 (SHP-2(Delta46-110)).
View Article and Find Full Text PDFThe fact that small cell lung cancer (SCLC) is commonly incurable despite being initially responsive to chemotherapy, combined with disappointing results from a recent SCLC clinical trial with imatinib, has intensified efforts to identify mechanisms of SCLC resistance. Adhesion to extracellular matrix (ECM) is one mechanism that can increase therapeutic resistance in SCLC cells. To address whether adhesion to ECM increases resistance through modulation of signaling pathways, a series of SCLC cell lines were plated on various ECM components, and activation of two signaling pathways that promote cellular survival, the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway and the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) pathway, was assessed.
View Article and Find Full Text PDFCarcinoembryonic antigen (CEA) has been shown to participate in the progression and metastatic growth of colorectal cancer. However, its biological function remains elusive. Recently, we found that CEA protects colon cancer cells from undergoing apoptosis, suggesting a complex role that includes signal transduction activity.
View Article and Find Full Text PDFRetrospective studies have shown that patients with tobacco-related cancers who continue to smoke after their diagnoses have lower response rates and shorter median survival compared with patients who stop smoking. To provide insight into the biologic basis for these clinical observations, we tested whether two tobacco components, nicotine or the tobacco-specific carcinogen, 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), could activate the Akt pathway and increase lung cancer cell proliferation and survival. Nicotine or NNK, rapidly and potently, activated Akt in non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC) cells.
View Article and Find Full Text PDF